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Definitions and notation

A = {a1, . . . , an} is a finite alphabet (n letters).
A±1 = A ∪ A−1 = {a1, a−1

1 , . . . , an, a−1
n }.

Usually, A = {a, b, c}.
(A±1)∗ the free monoid on A±1 (words on A±1).
1 denotes the empty word, and we have the notion of length.
∼ is the eq. rel. generated by aia−1

i ∼ a−1
i ai ∼ 1.

FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo ∼).
Every w ∈ A∗ has a unique reduced form, denoted w , (clearly w = w in
FA, and w is the shortest word with this property). We also say w is a
reduced word.
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The universal property

The universal property: given a group G and a mapping ϕ : A→ G, there
exists a unique group homomorphism Φ: FA → G such that the diagram

A
ϕ //

ι

��

G

FA

∃!Φ

>>~
~

~
~

commutes (where ι is the inclusion map).
Every group is a quotient of a free group

G = 〈a1, . . . , an | r1, . . . , rm〉 = FA/� r1, . . . , rm � .

So, the lattice of (normal) subgroups of FA is very important.
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Comparison with linear algebra

vector spaces free groups

• K n f.d. K -vector space • Fn f.g. free group

• Every f.d. K -vector
space is ' K n, some n,

• Every f.g. group G is a quotient
of Fn, some n,

• K n ' K m ⇔ n = m, • Fn ' Fm ⇔ n = m,

• – • (Nielsen-Schreier) Every subgroup
of a free group is free,

• Steinitz Lemma, • Not true,

• F 6 E ⇒ dim F 6 dim E , • Very false: Fℵ0 6 F2.

• A basis • The A-Stallings automata
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Stallings automata

Definition
A Stallings automata is a finite A-labeled oriented graph with a distinguished
vertex, (X , v), such that:

1- X is connected,
2- no vertex of degree 1 except possibly v (X is a core-graph),
3- no two edges with the same label go out of (or in to) the same vertex.

NO : •

a

��

b

����
��
��
��
��
��
�

• c // •
a

** •

b

XX0000000000000

c

jj

YES : •

a

��

b

����
��
��
��
��
��
�

•
a

** •

b

XX0000000000000

c

jj
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Stallings automata

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983),
551-565,

Stallings (building on previous works) gave a bijection between finitely
generated subgroups of FA and Stallings automata:

{f.g. subgroups of FA} ←→ {Stallings automata},

which is crucial for the modern understanding of the lattice of subgroups of FA.
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Reading the subgroup from the automata

Definition
To any given (Stallings) automaton (X , v), we associate its fundamental
group:

π(X , v) = { labels of closed paths at v} 6 FA,

clearly, a subgroup of FA.

•

a

��

X= b

����
��
��
��
��
��
�

•
a

** •

b

XX0000000000000

c

jj

π(X , •) = {1, a, a−1, bab, bc−1b,
babab−1cb−1, . . .}

π(X , •) 63 bc−1bcaa

Membership problem in π(X , •) is solvable.
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Membership problem in π(X , •) is solvable.
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A basis for π(X , v)

Proposition
For every Stallings automaton (X , v), the group π(X , v) is free of rank
rk(π(X , v)) = 1− |VX |+ |EX |.

Proof:
Take a maximal tree T in X .
Write T [p, q] for the geodesic (i.e. the unique reduced path) in T from p
to q.
For every e ∈ EX − ET , xe = label(T [v , ιe] · e · T [τe, v ]) belongs to
π(X , v).
Not difficult to see that {xe | e ∈ EX − ET} is a basis for π(X , v).
And, |EX − ET | = |EX | − |ET |

= |EX | − (|VT | − 1) = 1− |VX |+ |EX |. �
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�
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** •

b

XX0
0
0
0
0
0
0

c
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Example

•

a

��

b

���
�
�
�
�
�
�

•
a

** •

b

XX0
0
0
0
0
0
0

c

jj

H = 〈a, bab, b−1cb−1〉
rk(H) = 1− 3 + 5 = 3.

Enric Ventura (UPC) The lattice of subgroups of a free groups June 19, 2010 16 / 55



Example-2

· · · b // • b //

a

��
• b //

a

��
• b //

a

��
• b //

a

��
• b //

a

��
• b //

a

��
• b //

a

��
· · ·

Fℵ0 ' H = 〈. . . , b−2ab2, b−1ab, a, bab−1, b2ab−2, . . .〉 6 F2.
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Constructing the automata from the subgroup

In any automaton containing the following situation, for x ∈ A±1,

• x //

x
&&NNNNNNNNNNNNN u

v

we can fold and identify vertices u and v to obtain

• x // u = v .

This operation, (X , v) (X ′, v), is called a Stallings folding.
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Constructing the automata from the subgroup

Lemma (Stallings)
If (X , v) (X ′, v ′) is a Stallings folding then π(X , v) = π(X ′, v ′).

Given a f.g. subgroup H = 〈w1, . . . , wm〉 6 FA (we assume wi are reduced
words), do the following:

1- Draw the flower automaton,
2- Perform successive foldings until obtaining a Stallings automaton,

denoted Γ(H).

Well defined?
Need to see that the output does not depend on the process...
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Example: H = 〈baba−1, aba−1, aba2〉

• a // •

b

��
• a // •

b

OO

a //

a

��?
??

??
??

??
??

??
??

?

a

��

a

����
��

��
��

��
��

��
��

•

•

a

??����������������
•

b
oo • •

b
oo

Flower(H)
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Example: H = 〈baba−1, aba−1, aba2〉

• a // •

b

��
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a // •

b

��
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•
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Example: H = 〈baba−1, aba−1, aba2〉
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Example: H = 〈baba−1, aba−1, aba2〉

•

a
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Folding #2.
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Example: H = 〈baba−1, aba−1, aba2〉

• a //
b

.. •

a

����
��

��
��

��
��

��
��

b
pp

•

a

OO

Folding #3. Γ(H)

By Stallings Lemma, π(Γ(H), •) = 〈baba−1, aba−1, aba2〉
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Example: H = 〈baba−1, aba−1, aba2〉

• a //
b

.. •

a

����
��

��
��

��
��

��
��

b
pp

•

a

OO

Folding #3. Γ(H)

By Stallings Lemma, π(Γ(H), •) = 〈baba−1, aba−1, aba2〉
= 〈b, aba−1, a3〉
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The bijection

Lemma
The automaton Γ(H) does not depend on the sequence of foldings

Lemma
The automaton Γ(H) does not depend on the generators of H.

Theorem
The following is a bijection between f.g subgroups and Stallings automata:

{f.g. subgroups of FA} ←→ {Stallings automata}
H → Γ(H)

π(X , v) ← (X , v)

Enric Ventura (UPC) The lattice of subgroups of a free groups June 19, 2010 28 / 55



The bijection

Lemma
The automaton Γ(H) does not depend on the sequence of foldings

Lemma
The automaton Γ(H) does not depend on the generators of H.

Theorem
The following is a bijection between f.g subgroups and Stallings automata:

{f.g. subgroups of FA} ←→ {Stallings automata}
H → Γ(H)

π(X , v) ← (X , v)

Enric Ventura (UPC) The lattice of subgroups of a free groups June 19, 2010 28 / 55



The bijection

Lemma
The automaton Γ(H) does not depend on the sequence of foldings

Lemma
The automaton Γ(H) does not depend on the generators of H.

Theorem
The following is a bijection between f.g subgroups and Stallings automata:

{f.g. subgroups of FA} ←→ {Stallings automata}
H → Γ(H)

π(X , v) ← (X , v)

Enric Ventura (UPC) The lattice of subgroups of a free groups June 19, 2010 28 / 55



Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)
Every subgroup of FA is free.

We have proved the finitely generated case, but everything extends easily
to the general case.

The original proof (1920’s) is combinatorial and much more technical.

Everything now is nicely algorithmic.
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Outline

1 The friendly and unfriendly free group

2 The bijection between subgroups and automata

3 Several algorithmic applications

4 Recent applications
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Membership & containment

(Membership)
Does w belong to H = 〈w1, . . . , wm〉 ?

Construct Γ(H),
Check whether w is readable as a closed path in Γ(H) (at the basepoint).

(Containment)
Given H = 〈w1, . . . , wm〉 and K = 〈v1, . . . , vn〉, is H 6 K ?

Construct Γ(K ),
Check whether all the wi ’s are readable as closed paths in Γ(H) (at the
basepoint).
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Basis & conjugacy

(Computing a basis)
Given H = 〈w1, . . . , wm〉, find a basis for H.

Construct Γ(H),
Choose a maximal tree,
Read the corresponding basis.

(Conjugacy)
Given H = 〈w1, . . . , wm〉 and K = 〈v1, . . . , vn〉, are they conjugate (i.e. Hx = K
for some x ∈ FA) ?

Construct Γ(H) and Γ(K ),
Check whether the are “equal" up to the basepoint.
Every path between the two basepoints spells a valid x .
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Finite index subgroups

(Finite index)
Given H = 〈w1, . . . , wm〉, is H 6f .i. FA ? If yes, find a set of coset
representatives.

→ For u ∈ VΓ(H), choose p (the label of) a path from • to u; then,

{labels of paths from • to u} = π(Γ(H), •) · p = H · p

is a coset of FA/H.
→ FA/H is in bijection with the set of vertices of the “extended Γ(H)”

Construct Γ(H),
Check whether Γ(H) is complete (i.e. every letter going in and out of
every vertex),
Choose a maximal tree T in Γ(H),
{T [•, v ] | v ∈ VΓ(H)} is a set of coset reps. for H 6f .i. FA.
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Example

H = 〈b, ac, c−1a, cac−1, c−1bc−1, cbc, c4, c2ac−2, c2bc−2〉 6 〈a, b, c〉
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F3 = H t Hc t Ha t Hac−1.
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More on finite index

(Schreier index formula)
If H 6f .i. FA is of index [F : H], then r(H) = 1 + [F : H] · (r(FA)− 1).

Proof:

r(H) = 1− |VΓ(H)|+ |EΓ(H)| = 1− |VΓ(H)|+ |A| · |VΓ(H)|
= 1 + |VΓ(H)| · (|A| − 1) = 1 + [F : H] · (r(FA)− 1). �

Theorem (M. Hall)
Every f.g. subgroup H 6fg FA is a free factor of a finite index one,
H 6ff H ∗ L 6f .i. FA.

Proof:
Compute Γ(H) from a generating set,
Locate the “missing” heads and tails of edges (in equal number for every
letter),
Add new edges until having a complete automata (Y , v),
Clearly, H = π(Γ(H)) 6ff π(Y , v) 6f .i. FA. �
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Example

H = 〈b, cbc, c2bc−2〉 6 〈a, b, c〉 = F3

Γ(H) = •
b ##
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H 6ff H ∗ 〈 〉
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Pull-back of automata

Definition
The pull-back of two Stallings automata, (X , v) and (Y , w), is the cartesian
product (X × Y , (v , w)), respecting labels. This is not in general connected,
neither without degree 1 vertices, but it is folded.

Theorem (H. Neumann-Stallings)
For every f.g. subgroups H, K 6fg FA, Γ(H ∩ K ) coincides with the connected
component of Γ(H)× Γ(K ) containing the basepoint, after trimming.

This gives a very nice and quick algorithm to compute intersections:
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Computing intersections: an example

Let H = 〈a, b2, bab〉 and K = 〈b2, ba2〉 be subgroups of F2.
To compute a basis for H ∩ K :

• a // •
b

(( •
b

hh

a

��

•a
$$

b
��
•a

$$
b

GG

H ∩ K =? Clear that b2 ∈ H ∩ K , but.... something else?
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Rank of the intersection

Theorem (Howson)
The intersection of finitely generated subgroups of FA is again finitely
generated.

But the intersection can have bigger rank: “3 = 3 ∩ 2 6 2”

Theorem (H. Neumann)
r̃(H ∩ K ) 6 2r̃(H)r̃(K ), where r̃(H) = max{0, r(H)− 1}.

Conjecture (H. Neumann)
r̃(H ∩ K ) 6 r̃(H)r̃(K ).

In the example, 3− 1 6 (3− 1)(2− 1).
Enric Ventura (UPC) The lattice of subgroups of a free groups June 19, 2010 50 / 55



Rank of the intersection

Theorem (Howson)
The intersection of finitely generated subgroups of FA is again finitely
generated.

But the intersection can have bigger rank: “3 = 3 ∩ 2 6 2”

Theorem (H. Neumann)
r̃(H ∩ K ) 6 2r̃(H)r̃(K ), where r̃(H) = max{0, r(H)− 1}.

Conjecture (H. Neumann)
r̃(H ∩ K ) 6 r̃(H)r̃(K ).

In the example, 3− 1 6 (3− 1)(2− 1).
Enric Ventura (UPC) The lattice of subgroups of a free groups June 19, 2010 50 / 55



Rank of the intersection

Theorem (Howson)
The intersection of finitely generated subgroups of FA is again finitely
generated.

But the intersection can have bigger rank: “3 = 3 ∩ 2 6 2”

Theorem (H. Neumann)
r̃(H ∩ K ) 6 2r̃(H)r̃(K ), where r̃(H) = max{0, r(H)− 1}.

Conjecture (H. Neumann)
r̃(H ∩ K ) 6 r̃(H)r̃(K ).

In the example, 3− 1 6 (3− 1)(2− 1).
Enric Ventura (UPC) The lattice of subgroups of a free groups June 19, 2010 50 / 55



Rank of the intersection

Theorem (Howson)
The intersection of finitely generated subgroups of FA is again finitely
generated.

But the intersection can have bigger rank: “3 = 3 ∩ 2 6 2”

Theorem (H. Neumann)
r̃(H ∩ K ) 6 2r̃(H)r̃(K ), where r̃(H) = max{0, r(H)− 1}.

Conjecture (H. Neumann)
r̃(H ∩ K ) 6 r̃(H)r̃(K ).

In the example, 3− 1 6 (3− 1)(2− 1).
Enric Ventura (UPC) The lattice of subgroups of a free groups June 19, 2010 50 / 55



Rank of the intersection

Theorem (Howson)
The intersection of finitely generated subgroups of FA is again finitely
generated.

But the intersection can have bigger rank: “3 = 3 ∩ 2 6 2”

Theorem (H. Neumann)
r̃(H ∩ K ) 6 2r̃(H)r̃(K ), where r̃(H) = max{0, r(H)− 1}.

Conjecture (H. Neumann)
r̃(H ∩ K ) 6 r̃(H)r̃(K ).

In the example, 3− 1 6 (3− 1)(2− 1).
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Algebraic applications

Theorem (Kapovich-Miasnikov, 2001)
Every extension H 6 K of f.g. subgroups of FA splits, in a unique way, in an
algebraic part and a free factor part, H 6alg Cl(H) 6ff K .

Theorem (Whitehead, ’30)
Given H, K 6 FA, it is algorithmically decidable whether H 6ff K or not.

Theorem (Roig, V. Weil, 2007)
Given H, K 6 FA, it is algorithmically decidable whether H 6ff K or not, in
polynomial time

Enric Ventura (UPC) The lattice of subgroups of a free groups June 19, 2010 52 / 55



Algebraic applications

Theorem (Kapovich-Miasnikov, 2001)
Every extension H 6 K of f.g. subgroups of FA splits, in a unique way, in an
algebraic part and a free factor part, H 6alg Cl(H) 6ff K .

Theorem (Whitehead, ’30)
Given H, K 6 FA, it is algorithmically decidable whether H 6ff K or not.

Theorem (Roig, V. Weil, 2007)
Given H, K 6 FA, it is algorithmically decidable whether H 6ff K or not, in
polynomial time

Enric Ventura (UPC) The lattice of subgroups of a free groups June 19, 2010 52 / 55



Algebraic applications

Theorem (Kapovich-Miasnikov, 2001)
Every extension H 6 K of f.g. subgroups of FA splits, in a unique way, in an
algebraic part and a free factor part, H 6alg Cl(H) 6ff K .

Theorem (Whitehead, ’30)
Given H, K 6 FA, it is algorithmically decidable whether H 6ff K or not.

Theorem (Roig, V. Weil, 2007)
Given H, K 6 FA, it is algorithmically decidable whether H 6ff K or not, in
polynomial time

Enric Ventura (UPC) The lattice of subgroups of a free groups June 19, 2010 52 / 55



Fixed points

Theorem (Martino, V. 2003)
There exist subgroups of FA which are fixed subgroups of endomorphisms of
FA but are not the fixed subgroups of any automorphism.

Theorem (Martino, V. 2004)
Fixed subgroups of endomorphisms of FA are compressed.

Theorem (V. 2010)
Given H 6f .g. FA it is decidable whether H is the fixed subgroup of some
family of automorphisms (endomorphisms) of FA and, in the affirmative case,
find one.
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Computing V-closures

Proposition (Margolis-Sapir-Weil)
The p-closure of H 6f .g. FA is effectively computable, for all primes p.

Corollary (Margolis-Sapir-Weil)
The nil-closure of H 6f .g. FA is the intersection, over all primes, of the
p-closure of H. Hence, it is effectively computable.

Problem
Is the sol-closure of H 6f .g. FA effectively computable ?
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