The lattice of subgroups of a free groups: algorithmic aspects

Enric Ventura

Departament de Matemàtica Aplicada III

Universitat Politècnica de Catalunya

VIII Encuentro de Teoria de Grupos

Bilbao

June 19, 2010

- The friendly and unfriendly free group
- 2 The bijection between subgroups and automata
- 3 Several algorithmic applications
- 4 Recent applications

The friendly and unfriendly free group

- 2 The bijection between subgroups and automata
- 3 Several algorithmic applications
- 4 Recent applications

Enric Ventura (UPC)

- $A = \{a_1, \ldots, a_n\}$ is a finite alphabet (*n* letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- 1 denotes the empty word, and we have the notion of length.
- ~ is the eq. rel. generated by $a_i a_i^{-1} \sim a_i^{-1} a_i \sim 1$.
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on *A* (words on $A^{\pm 1}$ modulo \sim).
- Every $w \in A^*$ has a unique reduced form, denoted \overline{w} , (clearly $w = \overline{w}$ in F_A , and \overline{w} is the shortest word with this property). We also say \overline{w} is a reduced word.

- $A = \{a_1, \ldots, a_n\}$ is a finite alphabet (*n* letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- 1 denotes the empty word, and we have the notion of length.
- ~ is the eq. rel. generated by $a_i a_i^{-1} \sim a_i^{-1} a_i \sim 1$.
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on *A* (words on $A^{\pm 1}$ modulo \sim).
- Every $w \in A^*$ has a unique reduced form, denoted \overline{w} , (clearly $w = \overline{w}$ in F_A , and \overline{w} is the shortest word with this property). We also say \overline{w} is a reduced word.

- $A = \{a_1, \ldots, a_n\}$ is a finite alphabet (*n* letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{ \underline{a}, \underline{b}, c \}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- 1 denotes the empty word, and we have the notion of length.
- ~ is the eq. rel. generated by $a_i a_i^{-1} \sim a_i^{-1} a_i \sim 1$.
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on *A* (words on $A^{\pm 1}$ modulo \sim).
- Every $w \in A^*$ has a unique reduced form, denoted \overline{w} , (clearly $w = \overline{w}$ in F_A , and \overline{w} is the shortest word with this property). We also say \overline{w} is a reduced word.

- $A = \{a_1, \ldots, a_n\}$ is a finite alphabet (*n* letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- 1 denotes the empty word, and we have the notion of length.
- ~ is the eq. rel. generated by $a_i a_i^{-1} \sim a_i^{-1} a_i \sim 1$.
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on *A* (words on $A^{\pm 1}$ modulo \sim).
- Every $w \in A^*$ has a unique reduced form, denoted \overline{w} , (clearly $w = \overline{w}$ in F_A , and \overline{w} is the shortest word with this property). We also say \overline{w} is a reduced word.

- $A = \{a_1, \ldots, a_n\}$ is a finite alphabet (*n* letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{ \underline{a}, \underline{b}, c \}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- 1 denotes the empty word, and we have the notion of length.
- ~ is the eq. rel. generated by $a_i a_i^{-1} \sim a_i^{-1} a_i \sim 1$.
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on *A* (words on $A^{\pm 1}$ modulo \sim).
- Every $w \in A^*$ has a unique reduced form, denoted \overline{w} , (clearly $w = \overline{w}$ in F_A , and \overline{w} is the shortest word with this property). We also say \overline{w} is a reduced word.

- $A = \{a_1, \ldots, a_n\}$ is a finite alphabet (*n* letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{ \underline{a}, \underline{b}, c \}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- 1 denotes the empty word, and we have the notion of length.
- ~ is the eq. rel. generated by $a_i a_i^{-1} \sim a_i^{-1} a_i \sim 1$.
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on *A* (words on $A^{\pm 1}$ modulo \sim).
- Every $w \in A^*$ has a unique reduced form, denoted \overline{w} , (clearly $w = \overline{w}$ in F_A , and \overline{w} is the shortest word with this property). We also say \overline{w} is a reduced word.

- $A = \{a_1, \ldots, a_n\}$ is a finite alphabet (*n* letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{ \underline{a}, \underline{b}, c \}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- 1 denotes the empty word, and we have the notion of length.
- ~ is the eq. rel. generated by $a_i a_i^{-1} \sim a_i^{-1} a_i \sim 1$.
- *F_A* = (*A*^{±1})^{*}/ ∼ is the free group on *A* (words on *A*^{±1} modulo ∼).
- Every $w \in A^*$ has a unique reduced form, denoted \overline{w} , (clearly $w = \overline{w}$ in F_A , and \overline{w} is the shortest word with this property). We also say \overline{w} is a reduced word.

- $A = \{a_1, \ldots, a_n\}$ is a finite alphabet (*n* letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{ \underline{a}, \underline{b}, c \}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- 1 denotes the empty word, and we have the notion of length.
- ~ is the eq. rel. generated by $a_i a_i^{-1} \sim a_i^{-1} a_i \sim 1$.
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on *A* (words on $A^{\pm 1}$ modulo \sim).
- Every $w \in A^*$ has a unique reduced form, denoted \overline{w} , (clearly $w = \overline{w}$ in F_A , and \overline{w} is the shortest word with this property). We also say \overline{w} is a reduced word.

The universal property

The universal property: given a group *G* and a mapping φ: A → G, there exists a unique group homomorphism Φ: F_A → G such that the diagram

commutes (where ι is the inclusion map).

Every group is a quotient of a free group

$$G = \langle a_1, \ldots, a_n | r_1, \ldots, r_m \rangle = F_A / \ll r_1, \ldots, r_m \gg .$$

• So, the lattice of (normal) subgroups of F_A is very important.

The universal property

The universal property: given a group *G* and a mapping φ: A → G, there exists a unique group homomorphism Φ: F_A → G such that the diagram

commutes (where ι is the inclusion map).

Every group is a quotient of a free group

$$G = \langle a_1, \ldots, a_n | r_1, \ldots, r_m \rangle = F_A / \ll r_1, \ldots, r_m \gg .$$

• So, the lattice of (normal) subgroups of F_A is very important.

The universal property

The universal property: given a group *G* and a mapping φ: A → G, there exists a unique group homomorphism Φ: F_A → G such that the diagram

commutes (where ι is the inclusion map).

Every group is a quotient of a free group

$$G = \langle a_1, \ldots, a_n | r_1, \ldots, r_m \rangle = F_A / \ll r_1, \ldots, r_m \gg .$$

So, the lattice of (normal) subgroups of F_A is very important.

vector spaces

free groups

- Kⁿ f.d. K-vector space
- space is $\simeq K^n$, some *n*, of *F_n*, some *n*,
- $K^n \simeq K^m \Leftrightarrow n = m$, $F_n \simeq F_m \Leftrightarrow n = m$,
- -

- F_n f.g. free group
- Every f.d. K-vector Every f.g. group G is a quotient

- (Nielsen-Schreier) Every subgroup
- Steinitz Lemma.
- A basis

- Not true.
- $F \leq E \Rightarrow \dim F \leq \dim E$, Very false: $F_{\aleph_0} \leq F_2$.
 - The A-Stallings automata

vector spaces

• Kⁿ f.d. K-vector space

- space is $\simeq K^n$, some *n*, of *F_n*, some *n*,
- $K^n \simeq K^m \Leftrightarrow n = m$, $F_n \simeq F_m \Leftrightarrow n = m$,
- -

free groups

- F_n f.g. free group
- Every f.d. K-vector Every f.g. group G is a quotient

- (Nielsen-Schreier) Every subgroup
- Steinitz Lemma.
- A basis

- Not true.
- $F \leq E \Rightarrow \dim F \leq \dim E$, Very false: $F_{\aleph_0} \leq F_2$.
 - The A-Stallings automata

vector spaces

• Kⁿ f.d. K-vector space

- space is $\simeq K^n$, some *n*, of *F_n*, some *n*,
- $K^n \simeq K^m \Leftrightarrow n = m$, $F_n \simeq F_m \Leftrightarrow n = m$,
- -

free groups

- F_n f.g. free group
- Every f.d. K-vector Every f.g. group G is a quotient

- (Nielsen-Schreier) Every subgroup
- Steinitz Lemma.
- A basis

- Not true.
- $F \leq E \Rightarrow \dim F \leq \dim E$, Very false: $F_{\aleph_0} \leq F_2$.
 - The A-Stallings automata

vector spaces

• Kⁿ f.d. K-vector space

- Every f.d. *K*-vector space is $\simeq K^n$, some *n*, of F_n , some *n*,
- $K^n \simeq K^m \Leftrightarrow n = m$, $F_n \simeq F_m \Leftrightarrow n = m$,
- -
- Steinitz Lemma.

Not true.

free groups

- A basis

- $F \leq E \Rightarrow \dim F \leq \dim E$, Very false: $F_{\aleph_0} \leq F_2$.
 - The A-Stallings automata

- Every f.g. group G is a quotient

• F_n f.g. free group

(Nielsen-Schreier) Every subgroup

vector spaces

- Kⁿ f.d. K-vector space
- Every f.d. *K*-vector space is $\simeq K^n$, some *n*,
- $K^n \simeq K^m \Leftrightarrow n = m$, $F_n \simeq F_m \Leftrightarrow n = m$,
- -
- Steinitz Lemma.
- A basis

free groups

- F_n f.g. free group
- Every f.g. group G is a quotient of F_n , some n,

- (Nielsen-Schreier) Every subgroup
- Not true.
- $F \leq E \Rightarrow \dim F \leq \dim E$, Very false: $F_{\aleph_0} \leq F_2$.
 - The A-Stallings automata

vector spaces

• Kⁿ f.d. K-vector space

- Every f.d. *K*-vector space is $\simeq K^n$, some *n*,
- $K^n \simeq K^m \Leftrightarrow n = m$.
- .

free groups

- F_n f.g. free group
- Every f.g. group G is a quotient of F_n , some n,

• $F_n \simeq F_m \Leftrightarrow n = m$,

- (Nielsen-Schreier) Every subgroup
- Steinitz Lemma.
- Not true.
- A basis
- $F \leq E \Rightarrow \dim F \leq \dim E$, Very false: $F_{\aleph_0} \leq F_2$.
 - The A-Stallings automata

vector spaces

• Kⁿ f.d. K-vector space

- Every f.d. *K*-vector space is $\simeq K^n$, some *n*, of F_n , some *n*,
- $K^n \simeq K^m \Leftrightarrow n = m$.

free groups

- F_n f.g. free group
- Every f.g. group G is a quotient

•
$$F_n \simeq F_m \Leftrightarrow n = m$$
,

- (Nielsen-Schreier) Every subgroup
- Steinitz Lemma.
- Not true.
- A basis
- $F \leq E \Rightarrow \dim F \leq \dim E$, Very false: $F_{\aleph_0} \leq F_2$.
 - The A-Stallings automata

vector spaces

• Kⁿ f.d. K-vector space

- Every f.d. *K*-vector space is $\simeq K^n$, some *n*, of F_n , some *n*,
- $K^n \simeq K^m \Leftrightarrow n = m$.

free groups

- F_n f.g. free group
- Every f.g. group G is a quotient

•
$$F_n \simeq F_m \Leftrightarrow n = m$$
,

(Nielsen-Schreier) Every subgroup

• □ ▶ • □ ▶ • □ ▶

• Steinitz Lemma.

- Not true.
- A basis
- $F \leq E \Rightarrow \dim F \leq \dim E$, Very false: $F_{\aleph_0} \leq F_2$.
 - The A-Stallings automata

vector spaces

- Kⁿ f.d. K-vector space
- Every f.d. *K*-vector space is $\simeq K^n$, some *n*,
- $K^n \simeq K^m \Leftrightarrow n = m$.

Steinitz Lemma.

- Not true.
- A basis

free groups

- F_n f.g. free group
- Every f.g. group G is a quotient of F_n , some n,
- $F_n \simeq F_m \Leftrightarrow n = m$,
- (Nielsen-Schreier) Every subgroup of a free group is free,
- $F \leq E \Rightarrow \dim F \leq \dim E$, Very false: $F_{\aleph_0} \leq F_2$.
 - The A-Stallings automata

vector spaces

- Kⁿ f.d. K-vector space
- Every f.d. K-vector space is $\simeq K^n$, some *n*, of F_n , some *n*,
- $K^n \simeq K^m \Leftrightarrow n = m$.

free groups

- F_n f.g. free group
- Every f.g. group G is a quotient

•
$$F_n \simeq F_m \Leftrightarrow n = m$$
,

- (Nielsen-Schreier) Every subgroup of a free group is free,
- Steinitz Lemma.
- $F \leq E \Rightarrow \dim F \leq \dim E$, Very false: $F_{\aleph_0} \leq F_2$.
- A basis

- Not true.
- - The A-Stallings automata

vector spaces

- Kⁿ f.d. K-vector space
- Every f.d. *K*-vector space is $\simeq K^n$, some *n*, Every f.g. group of *F_n*, some *n*,
- $K^n \simeq K^m \Leftrightarrow n = m$,

• Steinitz Lemma,

free groups

- F_n f.g. free group
- Every f.g. group *G* is a quotient of *F_n*, some *n*,

•
$$F_n \simeq F_m \Leftrightarrow n = m$$
,

- (Nielsen-Schreier) Every subgroup of a free group is free,
- Not true,
- $F \leq E \Rightarrow \dim F \leq \dim E$, Very false: $F_{\aleph_0} \leq F_2$.
- A basis

• The A-Stallings automata

vector spaces

- Kⁿ f.d. K-vector space
- space is $\simeq K^n$, some *n*, of F_n , some *n*,
- $K^n \simeq K^m \Leftrightarrow n = m$.

- Steinitz Lemma.
- $F \leq E \Rightarrow \dim F \leq \dim E$, Very false: $F_{N_0} \leq F_2$.
- A basis

free groups

- F_n f.g. free group
- Every f.d. K-vector Every f.g. group G is a quotient

•
$$F_n \simeq F_m \Leftrightarrow n = m$$
,

- (Nielsen-Schreier) Every subgroup of a free group is free,
- Not true.
- - The A-Stallings automata

vector spaces

- Kⁿ f.d. K-vector space
- space is $\simeq K^n$, some *n*, of F_n , some *n*,
- $K^n \simeq K^m \Leftrightarrow n = m$.

- Steinitz Lemma.
- $F \leq E \Rightarrow \dim F \leq \dim E$, Very false: $F_{\aleph_0} \leq F_2$.
- A basis

free groups

- F_n f.g. free group
- Every f.d. K-vector Every f.g. group G is a quotient

•
$$F_n \simeq F_m \Leftrightarrow n = m$$
,

- (Nielsen-Schreier) Every subgroup of a free group is free,
- Not true.

The A-Stallings automata

vector spaces

- Kⁿ f.d. K-vector space
- space is $\simeq K^n$, some *n*, of F_n , some *n*,
- $K^n \simeq K^m \Leftrightarrow n = m$.

- Steinitz Lemma.
- $F \leq E \Rightarrow \dim F \leq \dim E$, Very false: $F_{\aleph_0} \leq F_2$.
- A basis

free groups

- F_n f.g. free group
- Every f.d. K-vector Every f.g. group G is a quotient

•
$$F_n \simeq F_m \Leftrightarrow n = m$$
,

- (Nielsen-Schreier) Every subgroup of a free group is free,
- Not true.
- The A-Stallings automata

vector spaces

- Kⁿ f.d. K-vector space
- space is $\simeq K^n$, some *n*, of F_n , some *n*,
- $K^n \simeq K^m \Leftrightarrow n = m$.

- Steinitz Lemma.
- $F \leq E \Rightarrow \dim F \leq \dim E$, Very false: $F_{\aleph_0} \leq F_2$.
- A basis

free groups

- F_n f.g. free group
- Every f.d. K-vector Every f.g. group G is a quotient

•
$$F_n \simeq F_m \Leftrightarrow n = m$$
,

- (Nielsen-Schreier) Every subgroup of a free group is free,
- Not true.
- The A-Stallings automata

The friendly and unfriendly free group

2 The bijection between subgroups and automata

3 Several algorithmic applications

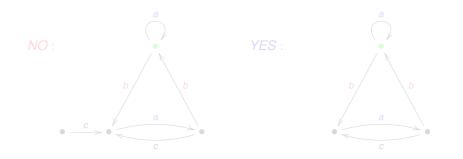
4 Recent applications

Stallings automata

Definition

A Stallings automata is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:

- 1- X is connected,
- 2- no vertex of degree 1 except possibly v (X is a core-graph),
- 3- no two edges with the same label go out of (or in to) the same vertex.

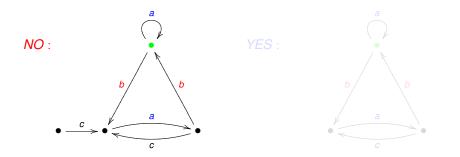


Stallings automata

Definition

A Stallings automata is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:

- 1- X is connected,
- 2- no vertex of degree 1 except possibly v (X is a core-graph),
- 3- no two edges with the same label go out of (or in to) the same vertex.

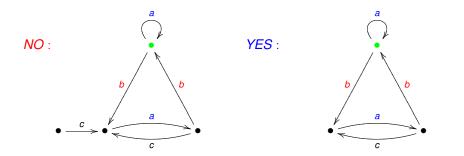


Stallings automata

Definition

A Stallings automata is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:

- 1- X is connected,
- 2- no vertex of degree 1 except possibly v (X is a core-graph),
- 3- no two edges with the same label go out of (or in to) the same vertex.



In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_A and Stallings automata:

{f.g. subgroups of F_A } \longleftrightarrow {Stallings automata},

which is crucial for the modern understanding of the lattice of subgroups of F_A .

・ロト ・同ト ・ヨト ・ヨ

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_A and Stallings automata:

 $\{f.g. \text{ subgroups of } F_A\} \quad \longleftrightarrow \quad \{Stallings \text{ automata}\},\$

which is crucial for the modern understanding of the lattice of subgroups of F_A .

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_A and Stallings automata:

{f.g. subgroups of F_A } \longleftrightarrow {Stallings automata},

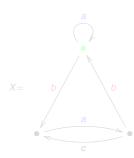
which is crucial for the modern understanding of the lattice of subgroups of F_A .

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

 $\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$

clearly, a subgroup of F_A .



 $\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$

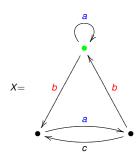
 $\pi(X, ullet)
ightarrow bc^{-1}bcaa$

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

 $\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$

clearly, a subgroup of F_A .



$$X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

 $\pi(X,ullet)
otin \mathcal{J}$ bc⁻¹bcaa

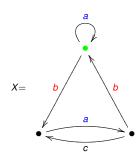
Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

 π

 $\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$

clearly, a subgroup of F_A .



$$(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

 $\pi(X, ullet)
ightarrow bc^{-1}bcaa$

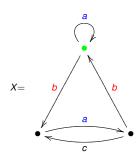
Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

 π

 $\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$

clearly, a subgroup of F_A .



$$(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

 $\pi(X,ullet)
otin \mathcal{J}$ bc⁻¹bcaa

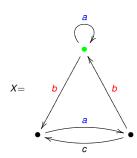
Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

 π

 $\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$

clearly, a subgroup of F_A .



$$(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

 $\pi(X,ullet)
otin
otin$

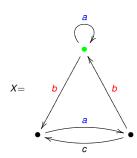
Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

 π

 $\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$

clearly, a subgroup of F_A .



$$(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

 $\pi(X,ullet)
otin
otin$

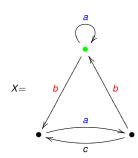
Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

 π

 $\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$

clearly, a subgroup of F_A .



$$(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

 $\pi(X,ullet)
otin
otin$

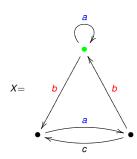
Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

 π

 $\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$

clearly, a subgroup of F_A .



$$(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

 $\pi(X,ullet)
otin
otin$

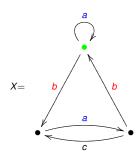
Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

 π

 $\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$

clearly, a subgroup of F_A .



$$(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

 $\pi(X, \bullet) \not\ni bc^{-1}bcaa$

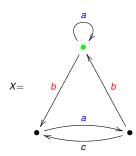
Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

 π

 $\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$

clearly, a subgroup of F_A .



$$(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

 $\pi(X, \bullet) \not\ni bc^{-1}bcaa$

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

Proof:

- Take a maximal tree *T* in *X*.
- Write *T*[*p*, *q*] for the geodesic (i.e. the unique reduced path) in *T* from *p* to *q*.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= $|EX| - (|VT| - 1) = 1 - |VX| + |EX|. \square$

イロト イヨト イヨト イヨ

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

Proof:

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= $|EX| - (|VT| - 1) = 1 - |VX| + |EX|. \square$

イロト イヨト イヨト イヨ

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

Proof:

- Take a maximal tree *T* in *X*.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= $|EX| - (|VT| - 1) = 1 - |VX| + |EX|. \square$

イロト イポト イヨト イヨト

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

Proof:

- Take a maximal tree *T* in *X*.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= $|EX| - (|VT| - 1) = 1 - |VX| + |EX|. \square$

イロト イポト イヨト イヨト

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

Proof:

- Take a maximal tree *T* in *X*.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.

• And, |EX - ET| = |EX| - |ET|= $|EX| - (|VT| - 1) = 1 - |VX| + |EX|. \square$

< ロ > < 同 > < 回 > < 回 > .

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

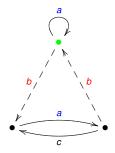
Proof:

- Take a maximal tree *T* in *X*.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.

• And,
$$|EX - ET| = |EX| - |ET|$$

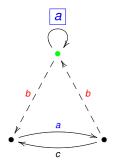
= $|EX| - (|VT| - 1) = 1 - |VX| + |EX|. \square$

Example



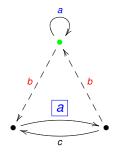
 $H = \langle \rangle$

-



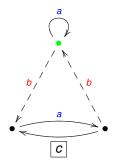
 $H = \langle \mathbf{a}, \rangle$

-

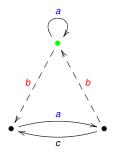


 $H = \langle a, bab, \rangle$

ъ



 $H = \langle a, bab, b^{-1}cb^{-1} \rangle$

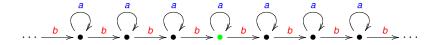


$$H = \langle a, bab, b^{-1}cb^{-1} \rangle$$

 $rk(H) = 1 - 3 + 5 = 3.$

< • • • **•**

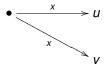
ъ



 $F_{\aleph_0} \simeq H = \langle \dots, b^{-2}ab^2, b^{-1}ab, a, bab^{-1}, b^2ab^{-2}, \dots \rangle \leqslant F_2.$

Constructing the automata from the subgroup

In any automaton containing the following situation, for $x \in A^{\pm 1}$,



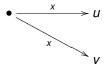
we can fold and identify vertices u and v to obtain

•
$$\xrightarrow{X} U = V$$
.

This operation, $(X, v) \rightsquigarrow (X', v)$, is called a Stallings folding.

Constructing the automata from the subgroup

In any automaton containing the following situation, for $x \in A^{\pm 1}$,



we can fold and identify vertices u and v to obtain

• $\xrightarrow{x} U = V$.

This operation, $(X, v) \rightsquigarrow (X', v)$, is called a Stallings folding.

Constructing the automata from the subgroup

In any automaton containing the following situation, for $x \in A^{\pm 1}$,



we can fold and identify vertices *u* and *v* to obtain

•
$$\longrightarrow U = V$$
.

This operation, $(X, v) \rightsquigarrow (X', v)$, is called a Stallings folding.

If $(X, v) \rightsquigarrow (X', v')$ is a Stallings folding then $\pi(X, v) = \pi(X', v')$.

Given a f.g. subgroup $H = \langle w_1, \ldots, w_m \rangle \leqslant F_A$ (we assume w_i are reduced words), do the following:

1- Draw the flower automaton,

2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

Well defined?

If $(X, v) \rightsquigarrow (X', v')$ is a Stallings folding then $\pi(X, v) = \pi(X', v')$.

Given a f.g. subgroup $H = \langle w_1, \ldots, w_m \rangle \leq F_A$ (we assume w_i are reduced words), do the following:

1- Draw the flower automaton,

 Perform successive foldings until obtaining a Stallings automaton, denoted Γ(H).

Well defined?

If $(X, v) \rightsquigarrow (X', v')$ is a Stallings folding then $\pi(X, v) = \pi(X', v')$.

Given a f.g. subgroup $H = \langle w_1, \ldots, w_m \rangle \leq F_A$ (we assume w_i are reduced words), do the following:

1- Draw the flower automaton,

2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

Well defined?

If $(X, v) \rightsquigarrow (X', v')$ is a Stallings folding then $\pi(X, v) = \pi(X', v')$.

Given a f.g. subgroup $H = \langle w_1, \ldots, w_m \rangle \leq F_A$ (we assume w_i are reduced words), do the following:

1- Draw the flower automaton,

2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

Well defined?

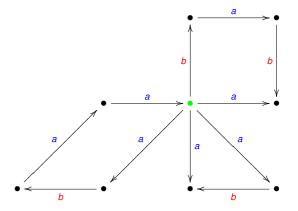
If $(X, v) \rightsquigarrow (X', v')$ is a Stallings folding then $\pi(X, v) = \pi(X', v')$.

Given a f.g. subgroup $H = \langle w_1, \ldots, w_m \rangle \leq F_A$ (we assume w_i are reduced words), do the following:

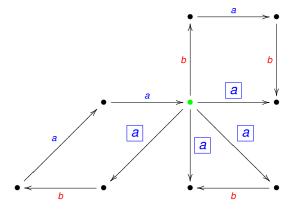
1- Draw the flower automaton,

2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

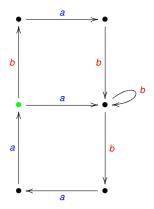
Well defined?



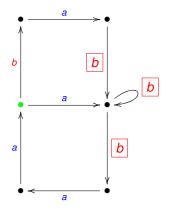
Flower(H)



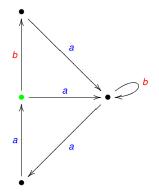
Flower(H)



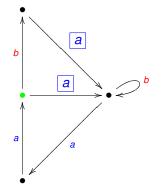
Folding #1



Folding #1.

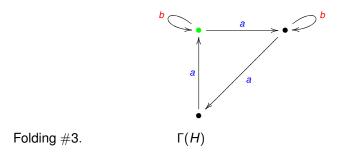


Folding #2.



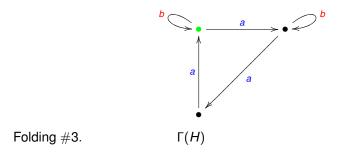
Folding #2.

Example: $H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$



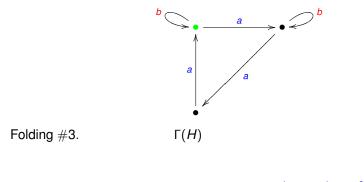
By Stallings Lemma, $\pi(\Gamma(H), \bullet) = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$

Example: $H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$



By Stallings Lemma, $\pi(\Gamma(H), \bullet) = \langle baba^{-1}, aba^{-1}, aba^{2} \rangle$

Example: $H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$



By Stallings Lemma,
$$\pi(\Gamma(H), \bullet) = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$$

= $\langle b, aba^{-1}, a^3 \rangle$

Lemma

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

Lemma

The automaton $\Gamma(H)$ does not depend on the generators of H.

Theorem

The following is a bijection between f.g subgroups and Stallings automata:

 $\begin{array}{rcl} \{f.g. \ subgroups \ of \ F_A\} & \longleftrightarrow & \{Stallings \ automata\}\\ & H & \rightarrow & \Gamma(H)\\ & \pi(X,v) & \leftarrow & (X,v) \end{array}$

イロト イヨト イヨト イヨト

Lemma

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

Lemma

The automaton $\Gamma(H)$ does not depend on the generators of H.

Theorem

The following is a bijection between f.g subgroups and Stallings automata:

 $\begin{array}{rcl} \{f.g. \ subgroups \ of \ F_A\} & \longleftrightarrow & \{Stallings \ automata\}\\ & H & \rightarrow & \Gamma(H)\\ & \pi(X,v) & \leftarrow & (X,v) \end{array}$

イロト イヨト イヨト イヨト

Lemma

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

Lemma

The automaton $\Gamma(H)$ does not depend on the generators of H.

Theorem

The following is a bijection between f.g subgroups and Stallings automata:

$$\begin{array}{rcl} \{f.g. \ subgroups \ of \ F_A\} & \longleftrightarrow & \{Stallings \ automata\}\\ & H & \rightarrow & \Gamma(H)\\ & \pi(X,v) & \leftarrow & (X,v) \end{array}$$

Every subgroup of F_A is free.

- We have proved the finitely generated case, but everything extends easily to the general case.
- The original proof (1920's) is combinatorial and much more technical.
- Everything now is nicely algorithmic.

Every subgroup of F_A is free.

 We have proved the finitely generated case, but everything extends easily to the general case.

The original proof (1920's) is combinatorial and much more technical.

• Everything now is nicely algorithmic.

Every subgroup of F_A is free.

- We have proved the finitely generated case, but everything extends easily to the general case.
- The original proof (1920's) is combinatorial and much more technical.

• Everything now is nicely algorithmic.

Every subgroup of F_A is free.

- We have proved the finitely generated case, but everything extends easily to the general case.
- The original proof (1920's) is combinatorial and much more technical.
- Everything now is nicely algorithmic.

The friendly and unfriendly free group

2 The bijection between subgroups and automata

Several algorithmic applications

Recent applications

Does w belong to $H = \langle w_1, \dots, w_m \rangle$?

- Construct $\Gamma(H)$,
- Check whether w is readable as a closed path in $\Gamma(H)$ (at the basepoint).

(Containment)

Given $H = \langle w_1, \ldots, w_m \rangle$ and $K = \langle v_1, \ldots, v_n \rangle$, is $H \leq K$?

- Construct $\Gamma(K)$,
- Check whether all the w_i's are readable as closed paths in Γ(H) (at the basepoint).

Does w belong to $H = \langle w_1, \dots, w_m \rangle$?

- Construct $\Gamma(H)$,
- Check whether w is readable as a closed path in $\Gamma(H)$ (at the basepoint).

(Containment)

Given $H = \langle w_1, \ldots, w_m \rangle$ and $K = \langle v_1, \ldots, v_n \rangle$, is $H \leq K$?

- Construct $\Gamma(K)$,
- Check whether all the w_i's are readable as closed paths in Γ(H) (at the basepoint).

イロト イヨト イヨト イヨ

Does w belong to $H = \langle w_1, \dots, w_m \rangle$?

- Construct $\Gamma(H)$,
- Check whether w is readable as a closed path in $\Gamma(H)$ (at the basepoint).

(Containment)

Given $H = \langle w_1, \ldots, w_m \rangle$ and $K = \langle v_1, \ldots, v_n \rangle$, is $H \leqslant K$?

- Construct $\Gamma(K)$,
- Check whether all the w_i 's are readable as closed paths in $\Gamma(H)$ (at the basepoint).

Does w belong to $H = \langle w_1, \dots, w_m \rangle$?

- Construct $\Gamma(H)$,
- Check whether w is readable as a closed path in $\Gamma(H)$ (at the basepoint).

(Containment)

Given $H = \langle w_1, \ldots, w_m \rangle$ and $K = \langle v_1, \ldots, v_n \rangle$, is $H \leq K$?

- Construct Γ(K),
- Check whether all the w_i's are readable as closed paths in Γ(H) (at the basepoint).

(Computing a basis)

Given $H = \langle w_1, \ldots, w_m \rangle$, find a basis for H.

- Construct $\Gamma(H)$,
- Choose a maximal tree,
- Read the corresponding basis.

(Conjugacy)

Given $H = \langle w_1, \dots, w_m \rangle$ and $K = \langle v_1, \dots, v_n \rangle$, are they conjugate (i.e. $H^x = K$ for some $x \in F_A$) ?

- Construct $\Gamma(H)$ and $\Gamma(K)$,
- Check whether the are "equal" up to the basepoint.
- Every path between the two basepoints spells a valid x.

< □ > < 🗗 >

(Computing a basis)

Given $H = \langle w_1, \ldots, w_m \rangle$, find a basis for H.

- Construct $\Gamma(H)$,
- Choose a maximal tree,
- Read the corresponding basis.

(Conjugacy)

Given $H = \langle w_1, \dots, w_m \rangle$ and $K = \langle v_1, \dots, v_n \rangle$, are they conjugate (i.e. $H^x = K$ for some $x \in F_A$) ?

- Construct $\Gamma(H)$ and $\Gamma(K)$,
- Check whether the are "equal" up to the basepoint.
- Every path between the two basepoints spells a valid *x*.

(Computing a basis)

Given $H = \langle w_1, \ldots, w_m \rangle$, find a basis for H.

- Construct $\Gamma(H)$,
- Choose a maximal tree,
- Read the corresponding basis.

(Conjugacy)

Given $H = \langle w_1, \dots, w_m \rangle$ and $K = \langle v_1, \dots, v_n \rangle$, are they conjugate (i.e. $H^x = K$ for some $x \in F_A$)?

- Construct $\Gamma(H)$ and $\Gamma(K)$,
- Check whether the are "equal" up to the basepoint.
- Every path between the two basepoints spells a valid *x*.

Image: A matrix

(Computing a basis)

Given $H = \langle w_1, \ldots, w_m \rangle$, find a basis for H.

- Construct $\Gamma(H)$,
- Choose a maximal tree,
- Read the corresponding basis.

(Conjugacy)

Given $H = \langle w_1, \dots, w_m \rangle$ and $K = \langle v_1, \dots, v_n \rangle$, are they conjugate (i.e. $H^x = K$ for some $x \in F_A$)?

- Construct $\Gamma(H)$ and $\Gamma(K)$,
- Check whether the are "equal" up to the basepoint.
- Every path between the two basepoints spells a valid x.

Finite index subgroups

(Finite index)

Given $H = \langle w_1, \ldots, w_m \rangle$, is $H \leq_{f.i.} F_A$? If yes, find a set of coset representatives.

→ For $u \in V\Gamma(H)$, choose p (the label of) a path from • to u; then,

{labels of paths from • to u} = $\pi(\Gamma(H), \bullet) \cdot p = H \cdot p$

is a coset of F_A/H .

- $\rightarrow F_A/H$ is in bijection with the set of vertices of the "extended $\Gamma(H)$ "
- Construct $\Gamma(H)$,
- Check whether Γ(H) is complete (i.e. every letter going in and out of every vertex),
- Choose a maximal tree T in $\Gamma(H)$,
- $\{T[\bullet, v] \mid v \in V\Gamma(H)\}$ is a set of coset reps. for $H \leq_{f.i.} F_A$.

・ロン ・回 ・ ・ ヨン・

Finite index subgroups

(Finite index)

Given $H = \langle w_1, \ldots, w_m \rangle$, is $H \leq_{f.i.} F_A$? If yes, find a set of coset representatives.

→ For $u \in V\Gamma(H)$, choose p (the label of) a path from • to u; then,

{labels of paths from • to u} = $\pi(\Gamma(H), \bullet) \cdot p = H \cdot p$

is a coset of F_A/H .

 $\rightarrow F_A/H$ is in bijection with the set of vertices of the "extended $\Gamma(H)$ "

- Construct $\Gamma(H)$,
- Check whether Γ(H) is complete (i.e. every letter going in and out of every vertex),
- Choose a maximal tree T in $\Gamma(H)$,
- $\{T[\bullet, v] \mid v \in V\Gamma(H)\}$ is a set of coset reps. for $H \leq_{f.i.} F_A$.

・ロ・・ (日・・ 日・・ 日・・

(Finite index)

Given $H = \langle w_1, \ldots, w_m \rangle$, is $H \leq_{f.i.} F_A$? If yes, find a set of coset representatives.

→ For $u \in V\Gamma(H)$, choose p (the label of) a path from • to u; then,

{labels of paths from • to u} = $\pi(\Gamma(H), \bullet) \cdot p = H \cdot p$

is a coset of F_A/H .

- $\rightarrow F_A/H$ is in bijection with the set of vertices of the "extended $\Gamma(H)$ "
 - Construct $\Gamma(H)$,
 - Check whether Γ(H) is complete (i.e. every letter going in and out of every vertex),
 - Choose a maximal tree T in $\Gamma(H)$,
 - $\{T[\bullet, v] \mid v \in V\Gamma(H)\}$ is a set of coset reps. for $H \leq_{f.i.} F_A$.

・ロン ・四 と ・ 回 と ・ 回 と

(Finite index)

Given $H = \langle w_1, \ldots, w_m \rangle$, is $H \leq_{f.i.} F_A$? If yes, find a set of coset representatives.

→ For $u \in V\Gamma(H)$, choose p (the label of) a path from • to u; then,

{labels of paths from • to u} = $\pi(\Gamma(H), \bullet) \cdot p = H \cdot p$

is a coset of F_A/H .

- $\rightarrow F_A/H$ is in bijection with the set of vertices of the "extended $\Gamma(H)$ "
 - Construct Γ(H),
 - Check whether Γ(H) is complete (i.e. every letter going in and out of every vertex),
 - Choose a maximal tree T in $\Gamma(H)$,
 - $\{T[\bullet, v] \mid v \in V\Gamma(H)\}$ is a set of coset reps. for $H \leq_{f.i.} F_A$.

イロト イヨト イヨト イヨト

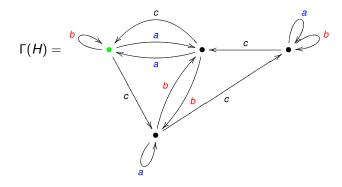
Example

 $H = \langle \mathbf{b}, \mathbf{ac}, \mathbf{c}^{-1}\mathbf{a}, \mathbf{cac}^{-1}, \mathbf{c}^{-1}\mathbf{bc}^{-1}, \mathbf{cbc}, \mathbf{c}^{4}, \mathbf{c}^{2}\mathbf{ac}^{-2}, \mathbf{c}^{2}\mathbf{bc}^{-2} \rangle \leqslant \langle \mathbf{a}, \mathbf{b}, \mathbf{c} \rangle$

$F_3 = H \sqcup Hc \sqcup Ha \sqcup Hac^{-1}$.

Example

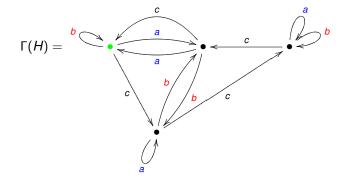
 $H = \langle \mathbf{b}, \mathbf{a}\mathbf{c}, \mathbf{c}^{-1}\mathbf{a}, \mathbf{c}\mathbf{a}\mathbf{c}^{-1}, \mathbf{c}^{-1}\mathbf{b}\mathbf{c}^{-1}, \mathbf{c}\mathbf{b}\mathbf{c}, \mathbf{c}^4, \mathbf{c}^2\mathbf{a}\mathbf{c}^{-2}, \mathbf{c}^2\mathbf{b}\mathbf{c}^{-2} \rangle \leqslant \langle \mathbf{a}, \mathbf{b}, \mathbf{c} \rangle$



 $F_3 = H \sqcup Hc \sqcup Ha \sqcup Hac^{-1}$.

Example

 $H = \langle \underline{b}, \underline{ac}, \underline{c^{-1}a}, \underline{cac^{-1}}, \underline{c^{-1}bc^{-1}}, \underline{cbc}, \underline{c^4}, \underline{c^2ac^{-2}}, \underline{c^2bc^{-2}} \rangle \leqslant \langle \underline{a}, \underline{b}, \underline{c} \rangle$



 $F_3 = H \sqcup Hc \sqcup Ha \sqcup Hac^{-1}$.

(Schreier index formula)

If $H \leq_{f.i.} F_A$ is of index [F : H], then $r(H) = 1 + [F : H] \cdot (r(F_A) - 1)$.

Proof:

$$r(H) = 1 - |V\Gamma(H)| + |E\Gamma(H)| = 1 - |V\Gamma(H)| + |A| \cdot |V\Gamma(H)|$$

= 1 + |V\Gamma(H)| \cdot (|A| - 1) = 1 + [F : H] \cdot (r(F_A) - 1). \Box

Theorem (M. Hall)

Every f.g. subgroup $H \leq_{fg} F_A$ is a free factor of a finite index one, $H \leq_{ff} H * L \leq_{f.i.} F_A$.

Proof:

- Compute $\Gamma(H)$ from a generating set,
- Locate the "missing" heads and tails of edges (in equal number for every letter),
- Add new edges until having a complete automata (Y, v),
- Clearly, $H = \pi(\Gamma(H)) \leq_{ff} \pi(Y, v) \leq_{f.i.} F_{A.}$

Enric Ventura (UPC)

・ロト ・ 日 ・ ・ 日 ・ ・ 日

(Schreier index formula)

If $H \leq_{f.i.} F_A$ is of index [F : H], then $r(H) = 1 + [F : H] \cdot (r(F_A) - 1)$.

Proof:

$$\begin{array}{rcl} r(H) & = & 1 - |V\Gamma(H)| + |E\Gamma(H)| = 1 - |V\Gamma(H)| + |A| \cdot |V\Gamma(H)| \\ & = & 1 + |V\Gamma(H)| \cdot (|A| - 1) = 1 + [F:H] \cdot (r(F_A) - 1). \end{array}$$

Theorem (M. Hall)

Every f.g. subgroup $H \leq_{fg} F_A$ is a free factor of a finite index one, $H \leq_{ff} H * L \leq_{f,i} F_A$.

Proof:

- Compute $\Gamma(H)$ from a generating set,
- Locate the "missing" heads and tails of edges (in equal number for every letter),
- Add new edges until having a complete automata (Y, v),
- Clearly, $H = \pi(\Gamma(H)) \leq_{ff} \pi(Y, v) \leq_{f.i.} F_{A.}$

Enric Ventura (UPC)

▲□ > ▲圖 > ▲ 国 > ▲ 国 >

(Schreier index formula)

If $H \leq_{f.i.} F_A$ is of index [F : H], then $r(H) = 1 + [F : H] \cdot (r(F_A) - 1)$.

Proof:

$$\begin{array}{rcl} r(H) & = & 1 - |V\Gamma(H)| + |E\Gamma(H)| = 1 - |V\Gamma(H)| + |A| \cdot |V\Gamma(H)| \\ & = & 1 + |V\Gamma(H)| \cdot (|A| - 1) = 1 + [F:H] \cdot (r(F_A) - 1). \end{array}$$

Theorem (M. Hall)

Every f.g. subgroup $H \leq_{fg} F_A$ is a free factor of a finite index one, $H \leq_{ff} H * L \leq_{f.i.} F_A$.

Proof:

- Compute $\Gamma(H)$ from a generating set,
- Locate the "missing" heads and tails of edges (in equal number for every letter),
- Add new edges until having a complete automata (Y, v),
- Clearly, $H = \pi(\Gamma(H)) \leq_{\text{ff}} \pi(Y, v) \leq_{f.i.} F_A. \Box$

Enric Ventura (UPC)

(ロ) (四) (三) (三)

(Schreier index formula)

If $H \leq_{f.i.} F_A$ is of index [F:H], then $r(H) = 1 + [F:H] \cdot (r(F_A) - 1)$.

Proof:

$$\begin{aligned} r(H) &= 1 - |V\Gamma(H)| + |E\Gamma(H)| = 1 - |V\Gamma(H)| + |A| \cdot |V\Gamma(H)| \\ &= 1 + |V\Gamma(H)| \cdot (|A| - 1) = 1 + [F : H] \cdot (r(F_A) - 1). \quad \Box \end{aligned}$$

Theorem (M. Hall)

Every f.g. subgroup $H \leq_{fg} F_A$ is a free factor of a finite index one, $H \leq_{ff} H * L \leq_{f.i.} F_A$.

Proof:

- Compute $\Gamma(H)$ from a generating set,
- Locate the "missing" heads and tails of edges (in equal number for every letter),
- Add new edges until having a complete automata (Y, v),
- Clearly, $H = \pi(\Gamma(H)) \leq_{ff} \pi(Y, v) \leq_{f.i.} F_A. \Box$

Enric Ventura (UPC)

The lattice of subgroups of a free groups

・ロト ・四ト ・ヨト ・ヨト

(Schreier index formula)

If $H \leq_{f.i.} F_A$ is of index [F : H], then $r(H) = 1 + [F : H] \cdot (r(F_A) - 1)$.

Proof:

$$\begin{array}{rcl} r(H) & = & 1 - |V\Gamma(H)| + |E\Gamma(H)| = 1 - |V\Gamma(H)| + |A| \cdot |V\Gamma(H)| \\ & = & 1 + |V\Gamma(H)| \cdot (|A| - 1) = 1 + [F:H] \cdot (r(F_A) - 1). \end{array}$$

Theorem (M. Hall)

Every f.g. subgroup $H \leq_{fg} F_A$ is a free factor of a finite index one, $H \leq_{ff} H * L \leq_{f.i.} F_A$.

Proof:

- Compute $\Gamma(H)$ from a generating set,
- Locate the "missing" heads and tails of edges (in equal number for every letter),
- Add new edges until having a complete automata (Y, v),
- Clearly, $H = \pi(\Gamma(H)) \leq_{ff} \pi(Y, v) \leq_{f.i.} F_{A.}$

・ロト ・四ト ・ヨト ・ヨト

(Schreier index formula)

If $H \leq_{f.i.} F_A$ is of index [F : H], then $r(H) = 1 + [F : H] \cdot (r(F_A) - 1)$.

Proof:

$$\begin{array}{rcl} r(H) & = & 1 - |V\Gamma(H)| + |E\Gamma(H)| = 1 - |V\Gamma(H)| + |A| \cdot |V\Gamma(H)| \\ & = & 1 + |V\Gamma(H)| \cdot (|A| - 1) = 1 + [F:H] \cdot (r(F_A) - 1). \end{array}$$

Theorem (M. Hall)

Every f.g. subgroup $H \leq_{fg} F_A$ is a free factor of a finite index one, $H \leq_{ff} H * L \leq_{f.i.} F_A$.

Proof:

- Compute $\Gamma(H)$ from a generating set,
- Locate the "missing" heads and tails of edges (in equal number for every letter),
- Add new edges until having a complete automata (Y, v),
- Clearly, $H = \pi(\Gamma(H)) \leq_{ff} \pi(Y, v) \leq_{f.i.} F_A$. \Box

Enric Ventura (UPC)

(Schreier index formula)

If $H \leq_{f.i.} F_A$ is of index [F : H], then $r(H) = 1 + [F : H] \cdot (r(F_A) - 1)$.

Proof:

$$\begin{array}{rcl} r(H) & = & 1 - |V\Gamma(H)| + |E\Gamma(H)| = 1 - |V\Gamma(H)| + |A| \cdot |V\Gamma(H)| \\ & = & 1 + |V\Gamma(H)| \cdot (|A| - 1) = 1 + [F:H] \cdot (r(F_A) - 1). \end{array}$$

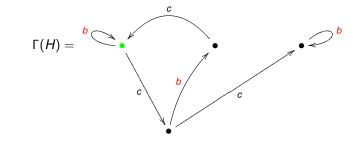
Theorem (M. Hall)

Every f.g. subgroup $H \leq_{fg} F_A$ is a free factor of a finite index one, $H \leq_{ff} H * L \leq_{f.i.} F_A$.

Proof:

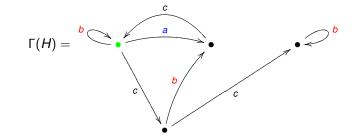
- Compute $\Gamma(H)$ from a generating set,
- Locate the "missing" heads and tails of edges (in equal number for every letter),
- Add new edges until having a complete automata (Y, v),
- Clearly, $H = \pi(\Gamma(H)) \leq_{ff} \pi(Y, v) \leq_{f.i.} F_A.$

 $H = \langle b, cbc, c^2bc^{-2} \rangle \leqslant \langle a, b, c \rangle = F_3$



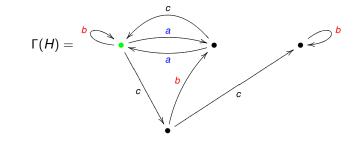
 $H \leq_{ff} H * \langle \rangle$

 $H = \langle b, cbc, c^2bc^{-2} \rangle \leqslant \langle a, b, c \rangle = F_3$



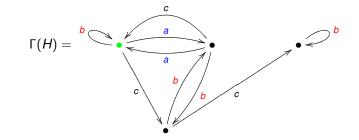
 $H \leq_{ff} H * \langle ac \rangle$

 $H = \langle b, cbc, c^2bc^{-2} \rangle \leqslant \langle a, b, c \rangle = F_3$



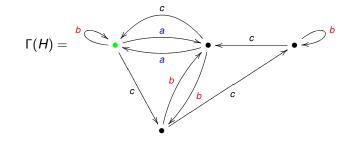
 $H \leq_{ff} H * \langle ac, c^{-1}a \rangle$

 $H = \langle b, cbc, c^2bc^{-2} \rangle \leqslant \langle a, b, c \rangle = F_3$



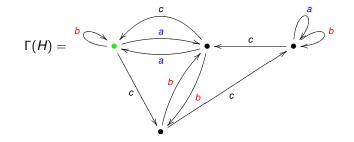
 $H \leq_{ff} H * \langle ac, c^{-1}a, c^{-1}bc^{-1} \rangle$

 $H = \langle b, cbc, c^2bc^{-2} \rangle \leqslant \langle a, b, c \rangle = F_3$



 $H \leq_{\text{ff}} H * \langle ac, c^{-1}a, c^{-1}bc^{-1}, c^4 \rangle$

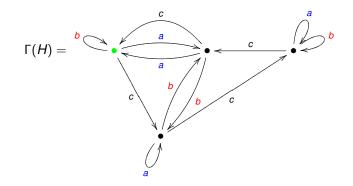
 $H = \langle b, cbc, c^2bc^{-2} \rangle \leqslant \langle a, b, c \rangle = F_3$



 $H \leq_{\text{ff}} H * \langle ac, c^{-1}a, c^{-1}bc^{-1}, c^4, c^2ac^{-2} \rangle$

Example

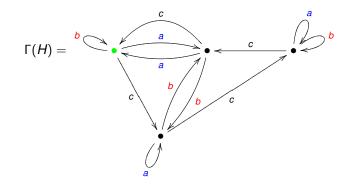
 $H = \langle b, cbc, c^2bc^{-2} \rangle \leqslant \langle a, b, c \rangle = F_3$



 $H \leqslant_{\text{ff}} H \ast \langle ac, c^{-1}a, c^{-1}bc^{-1}, c^4, c^2ac^{-2}, cac^{-1} \rangle \leqslant_4 F_3.$

Example

 $H = \langle b, cbc, c^2bc^{-2} \rangle \leqslant \langle a, b, c \rangle = F_3$



 $H \leqslant_{\textit{ff}} H \ast \langle ac, c^{-1}a, c^{-1}bc^{-1}, c^4, c^2ac^{-2}, cac^{-1} \rangle \leqslant_4 F_3.$

Definition

The pull-back of two Stallings automata, (X, v) and (Y, w), is the cartesian product $(X \times Y, (v, w))$, respecting labels. This is not in general connected, neither without degree 1 vertices, but it is folded.

Theorem (H. Neumann-Stallings)

For every f.g. subgroups $H, K \leq_{tg} F_A$, $\Gamma(H \cap K)$ coincides with the connected component of $\Gamma(H) \times \Gamma(K)$ containing the basepoint, after trimming.

This gives a very nice and quick algorithm to compute intersections:

Image: Image:

Definition

The pull-back of two Stallings automata, (X, v) and (Y, w), is the cartesian product $(X \times Y, (v, w))$, respecting labels. This is not in general connected, neither without degree 1 vertices, but it is folded.

Theorem (H. Neumann-Stallings)

For every f.g. subgroups $H, K \leq_{tg} F_A$, $\Gamma(H \cap K)$ coincides with the connected component of $\Gamma(H) \times \Gamma(K)$ containing the basepoint, after trimming.

This gives a very nice and quick algorithm to compute intersections:

Definition

The pull-back of two Stallings automata, (X, v) and (Y, w), is the cartesian product $(X \times Y, (v, w))$, respecting labels. This is not in general connected, neither without degree 1 vertices, but it is folded.

Theorem (H. Neumann-Stallings)

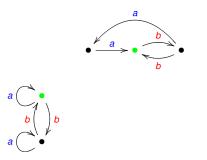
For every f.g. subgroups $H, K \leq_{tg} F_A$, $\Gamma(H \cap K)$ coincides with the connected component of $\Gamma(H) \times \Gamma(K)$ containing the basepoint, after trimming.

This gives a very nice and quick algorithm to compute intersections:

Let $H = \langle a, b^2, bab \rangle$ and $K = \langle b^2, ba^2 \rangle$ be subgroups of F_2 . To compute a basis for $H \cap K$:

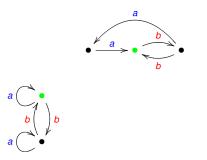
 $H \cap K =$? Clear that $b^2 \in H \cap K$, but.... something else?

Let $H = \langle a, b^2, bab \rangle$ and $K = \langle b^2, ba^2 \rangle$ be subgroups of F_2 . To compute a basis for $H \cap K$:



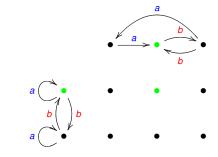
 $H \cap K =$? Clear that $b^2 \in H \cap K$, but.... something else?

Let $H = \langle a, b^2, bab \rangle$ and $K = \langle b^2, ba^2 \rangle$ be subgroups of F_2 . To compute a basis for $H \cap K$:



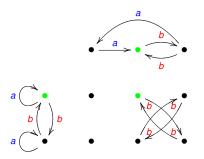
 $H \cap K =$? Clear that $b^2 \in H \cap K$, but.... something else?

Let $H = \langle a, b^2, bab \rangle$ and $K = \langle b^2, ba^2 \rangle$ be subgroups of F_2 . To compute a basis for $H \cap K$:



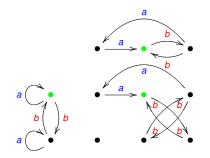
 $H \cap K = \langle b^2, \dots (?) \dots \rangle$

Let $H = \langle a, b^2, bab \rangle$ and $K = \langle b^2, ba^2 \rangle$ be subgroups of F_2 . To compute a basis for $H \cap K$:



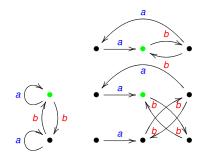
 $H \cap K = \langle b^2, \rangle$

Let $H = \langle a, b^2, bab \rangle$ and $K = \langle b^2, ba^2 \rangle$ be subgroups of F_2 . To compute a basis for $H \cap K$:



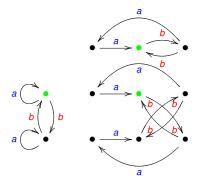
 $H \cap K = \langle b^2, a^{-2}b^2a^2, \rangle$

Let $H = \langle a, b^2, bab \rangle$ and $K = \langle b^2, ba^2 \rangle$ be subgroups of F_2 . To compute a basis for $H \cap K$:



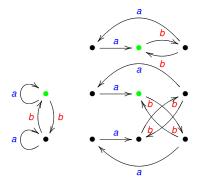
 $H \cap K = \langle b^2, a^{-2}b^2a^2, \rangle$

Let $H = \langle a, b^2, bab \rangle$ and $K = \langle b^2, ba^2 \rangle$ be subgroups of F_2 . To compute a basis for $H \cap K$:



 $H \cap K = \langle b^2, a^{-2}b^2a^2, ba^2ba^2 \rangle$... and nothing else.

Let $H = \langle a, b^2, bab \rangle$ and $K = \langle b^2, ba^2 \rangle$ be subgroups of F_2 . To compute a basis for $H \cap K$:



 $H \cap K = \langle b^2, a^{-2}b^2a^2, ba^2ba^2 \rangle$... and nothing else.

Theorem (Howson)

The intersection of finitely generated subgroups of F_A is again finitely generated.

But the intersection can have bigger rank: " $3 = 3 \cap 2 \leq 2$ "

Theorem (H. Neumann)

 $\tilde{r}(H \cap K) \leq 2\tilde{r}(H)\tilde{r}(K)$, where $\tilde{r}(H) = \max\{0, r(H) - 1\}$.

Conjecture (H. Neumann)

 $\tilde{r}(H \cap K) \leqslant \tilde{r}(H)\tilde{r}(K).$

In the example, $3 - 1 \leq (3 - 1)(2 - 1)$.

イロト イヨト イヨト イヨ

Theorem (Howson)

The intersection of finitely generated subgroups of F_A is again finitely generated.

But the intersection can have bigger rank: " $3 = 3 \cap 2 \leq 2$ "

Theorem (H. Neumann)

 $\tilde{r}(H \cap K) \leq 2\tilde{r}(H)\tilde{r}(K)$, where $\tilde{r}(H) = \max\{0, r(H) - 1\}$.

Conjecture (H. Neumann)

 $\tilde{r}(H \cap K) \leqslant \tilde{r}(H)\tilde{r}(K).$

In the example, $3 - 1 \leq (3 - 1)(2 - 1)$.

イロト イヨト イヨト イヨト

Theorem (Howson)

The intersection of finitely generated subgroups of F_A is again finitely generated.

But the intersection can have bigger rank: " $3 = 3 \cap 2 \leq 2$ "

Theorem (H. Neumann)

 $\tilde{r}(H \cap K) \leq 2\tilde{r}(H)\tilde{r}(K)$, where $\tilde{r}(H) = \max\{0, r(H) - 1\}$.

Conjecture (H. Neumann)

 $\tilde{r}(H \cap K) \leq \tilde{r}(H)\tilde{r}(K).$

In the example, $3 - 1 \leq (3 - 1)(2 - 1)$.

イロト イヨト イヨト イヨト

Theorem (Howson)

The intersection of finitely generated subgroups of F_A is again finitely generated.

But the intersection can have bigger rank: " $3 = 3 \cap 2 \leq 2$ "

Theorem (H. Neumann)

 $\tilde{r}(H \cap K) \leq 2\tilde{r}(H)\tilde{r}(K)$, where $\tilde{r}(H) = \max\{0, r(H) - 1\}$.

Conjecture (H. Neumann)

 $\tilde{r}(H \cap K) \leq \tilde{r}(H)\tilde{r}(K).$

In the example, $3 - 1 \leq (3 - 1)(2 - 1)$.

イロト イヨト イヨト

Theorem (Howson)

The intersection of finitely generated subgroups of F_A is again finitely generated.

But the intersection can have bigger rank: " $3 = 3 \cap 2 \leq 2$ "

Theorem (H. Neumann)

 $\tilde{r}(H \cap K) \leq 2\tilde{r}(H)\tilde{r}(K)$, where $\tilde{r}(H) = \max\{0, r(H) - 1\}$.

Conjecture (H. Neumann)

 $\tilde{r}(H \cap K) \leq \tilde{r}(H)\tilde{r}(K).$

n the example,
$$3 - 1 \leq (3 - 1)(2 - 1)$$
.

Enric Ventura (UPC)

- The friendly and unfriendly free group
- 2 The bijection between subgroups and automata
- 3 Several algorithmic applications
- Recent applications

Theorem (Kapovich-Miasnikov, 2001)

Every extension $H \leq K$ of f.g. subgroups of F_A splits, in a unique way, in an algebraic part and a free factor part, $H \leq_{alg} Cl(H) \leq_{ff} K$.

Theorem (Whitehead, '30)

Given $H, K \leq F_A$, it is algorithmically decidable whether $H \leq_{\text{ff}} K$ or not.

Theorem (Roig, V. Weil, 2007)

Given $H, K \leq F_A$, it is algorithmically decidable whether $H \leq_{ff} K$ or not, in polynomial time

< □ > < □ > < □ > < □ >

Theorem (Kapovich-Miasnikov, 2001)

Every extension $H \leq K$ of f.g. subgroups of F_A splits, in a unique way, in an algebraic part and a free factor part, $H \leq_{alg} Cl(H) \leq_{ff} K$.

Theorem (Whitehead, '30)

Given $H, K \leq F_A$, it is algorithmically decidable whether $H \leq_{\text{ff}} K$ or not.

Theorem (Roig, V. Weil, 2007)

Given $H, K \leq F_A$, it is algorithmically decidable whether $H \leq_{ff} K$ or not, in polynomial time

< ロ > < 同 > < 臣 > < 臣

Theorem (Kapovich-Miasnikov, 2001)

Every extension $H \leq K$ of f.g. subgroups of F_A splits, in a unique way, in an algebraic part and a free factor part, $H \leq_{alg} Cl(H) \leq_{ff} K$.

Theorem (Whitehead, '30)

Given $H, K \leq F_A$, it is algorithmically decidable whether $H \leq_{\text{ff}} K$ or not.

Theorem (Roig, V. Weil, 2007)

Given $H, K \leq F_A$, it is algorithmically decidable whether $H \leq_{\text{ff}} K$ or not, in polynomial time

Image: Image:

Theorem (Martino, V. 2003)

There exist subgroups of F_A which are fixed subgroups of endomorphisms of F_A but are not the fixed subgroups of any automorphism.

Theorem (Martino, V. 2004)

Fixed subgroups of endomorphisms of F_A are compressed.

Theorem (V. 2010)

Given $H \leq_{f.g.} F_A$ it is decidable whether H is the fixed subgroup of some family of automorphisms (endomorphisms) of F_A and, in the affirmative case, find one.

< □ > < 🗗 >

Theorem (Martino, V. 2003)

There exist subgroups of F_A which are fixed subgroups of endomorphisms of F_A but are not the fixed subgroups of any automorphism.

Theorem (Martino, V. 2004)

Fixed subgroups of endomorphisms of F_A are compressed.

Theorem (V. 2010)

Given $H \leq_{f.g.} F_A$ it is decidable whether H is the fixed subgroup of some family of automorphisms (endomorphisms) of F_A and, in the affirmative case, find one.

Theorem (Martino, V. 2003)

There exist subgroups of F_A which are fixed subgroups of endomorphisms of F_A but are not the fixed subgroups of any automorphism.

Theorem (Martino, V. 2004)

Fixed subgroups of endomorphisms of F_A are compressed.

Theorem (V. 2010)

Given $H \leq_{f.g.} F_A$ it is decidable whether H is the fixed subgroup of some family of automorphisms (endomorphisms) of F_A and, in the affirmative case, find one.

Image: Image:

Proposition (Margolis-Sapir-Weil)

The p-closure of $H \leq_{f.g.} F_A$ is effectively computable, for all primes p.

Corollary (Margolis-Sapir-Weil)

The nil-closure of $H \leq_{f.g.} F_A$ is the intersection, over all primes, of the p-closure of H. Hence, it is effectively computable.

Problem

Is the sol-closure of $H \leq_{f.g.} F_A$ effectively computable ?

Proposition (Margolis-Sapir-Weil)

The p-closure of $H \leq_{f.g.} F_A$ is effectively computable, for all primes p.

Corollary (Margolis-Sapir-Weil)

The nil-closure of $H \leq_{f.g.} F_A$ is the intersection, over all primes, of the *p*-closure of *H*. Hence, it is effectively computable.

Problem

Is the sol-closure of H $\leqslant_{f.g.}$ F_A effectively computable ?

Image: Image:

Proposition (Margolis-Sapir-Weil)

The p-closure of $H \leq_{f.g.} F_A$ is effectively computable, for all primes p.

Corollary (Margolis-Sapir-Weil)

The nil-closure of $H \leq_{f.g.} F_A$ is the intersection, over all primes, of the *p*-closure of *H*. Hence, it is effectively computable.

Problem

Is the sol-closure of $H \leq_{f.g.} F_A$ effectively computable ?

ESKERRIK ASKO

 $\langle \Box \rangle \langle \Box \rangle$