Twisted conjugacy for free groups and the conjugacy problem for some extensions of groups

Enric Ventura

Departament de Matemàtica Aplicada III

Universitat Politècnica de Catalunya

Algebra Topology Colloquium Series

Bates college, March 24th, 2009.

Outline

- The twisted conjugacy problem
- 2 The conjugacy problem for free-by-cyclic groups
- The main theorem
- The conjugacy problem for free-by-free groups
- 5 The conjugacy problem for (free abelian)-by-free groups

Outline

- 1 The twisted conjugacy problem
- 2 The conjugacy problem for free-by-cyclic groups
- The main theorem
- 4 The conjugacy problem for free-by-free groups
- 5 The conjugacy problem for (free abelian)-by-free groups

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \operatorname{End}(F_n)$.
- I let endomorphisms $\varphi \colon F_n \to F_n$ act on the right, $x \mapsto x \varphi$.
- So, compositions are $\alpha\beta \colon F_n \stackrel{\alpha}{\to} F_n \stackrel{\beta}{\to} F_n$, $x \mapsto x\alpha \mapsto x\alpha\beta$.
- conjugations: $\gamma_u : F_n \to F_n, x \mapsto u^{-1}xu$.
- Fix $(\phi) = \{x \in F_n \mid x\phi = x\} \leqslant F_n$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \operatorname{End}(F_n)$.
- I let endomorphisms $\varphi \colon F_n \to F_n$ act on the right, $x \mapsto x \varphi$.
- So, compositions are $\alpha\beta \colon F_n \stackrel{\alpha}{\to} F_n \stackrel{\beta}{\to} F_n$, $x \mapsto x\alpha \mapsto x\alpha\beta$.
- conjugations: $\gamma_u : F_n \to F_n, x \mapsto u^{-1}xu$.
- Fix $(\phi) = \{x \in F_n \mid x\phi = x\} \leqslant F_n$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \operatorname{End}(F_n)$.
- I let endomorphisms $\varphi \colon F_n \to F_n$ act on the right, $x \mapsto x \varphi$.
- So, compositions are $\alpha\beta \colon F_n \stackrel{\alpha}{\to} F_n \stackrel{\beta}{\to} F_n$, $x \mapsto x\alpha \mapsto x\alpha\beta$.
- conjugations: $\gamma_u : F_n \to F_n, x \mapsto u^{-1}xu$.
- Fix $(\phi) = \{x \in F_n \mid x\phi = x\} \leqslant F_n$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \operatorname{End}(F_n)$.
- Let endomorphisms $\varphi \colon F_n \to F_n$ act on the right, $x \mapsto x\varphi$.
- So, compositions are $\alpha\beta \colon F_n \stackrel{\alpha}{\to} F_n \stackrel{\beta}{\to} F_n$, $x \mapsto x\alpha \mapsto x\alpha\beta$.
- conjugations: $\gamma_u : F_n \to F_n, x \mapsto u^{-1}xu$.
- Fix $(\phi) = \{x \in F_n \mid x\phi = x\} \leqslant F_n$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \operatorname{End}(F_n)$.
- I let endomorphisms $\varphi \colon F_n \to F_n$ act on the right, $x \mapsto x \varphi$.
- So, compositions are $\alpha\beta \colon F_n \xrightarrow{\alpha} F_n \xrightarrow{\beta} F_n$, $x \mapsto x\alpha \mapsto x\alpha\beta$.
- conjugations: $\gamma_u : F_n \to F_n, x \mapsto u^{-1}xu$.
- Fix $(\phi) = \{x \in F_n \mid x\phi = x\} \leqslant F_n$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \operatorname{End}(F_n)$.
- I let endomorphisms $\varphi \colon F_n \to F_n$ act on the right, $x \mapsto x \varphi$.
- So, compositions are $\alpha\beta \colon F_n \xrightarrow{\alpha} F_n \xrightarrow{\beta} F_n$, $x \mapsto x\alpha \mapsto x\alpha\beta$.
- conjugations: $\gamma_u : F_n \to F_n, x \mapsto u^{-1}xu$.
- Fix $(\phi) = \{x \in F_n \mid x\phi = x\} \leqslant F_n$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \operatorname{End}(F_n)$.
- I let endomorphisms $\varphi \colon F_n \to F_n$ act on the right, $x \mapsto x \varphi$.
- So, compositions are $\alpha\beta \colon F_n \xrightarrow{\alpha} F_n \xrightarrow{\beta} F_n$, $x \mapsto x\alpha \mapsto x\alpha\beta$.
- conjugations: γ_u : $F_n \to F_n$, $x \mapsto u^{-1}xu$.
- Fix $(\phi) = \{x \in F_n \mid x\phi = x\} \leqslant F_n$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq \operatorname{End}(F_n)$.
- I let endomorphisms $\varphi \colon F_n \to F_n$ act on the right, $x \mapsto x \varphi$.
- So, compositions are $\alpha\beta \colon F_n \xrightarrow{\alpha} F_n \xrightarrow{\beta} F_n$, $x \mapsto x\alpha \mapsto x\alpha\beta$.
- conjugations: γ_u : $F_n \to F_n$, $x \mapsto u^{-1}xu$.
- $\bullet \ \mathsf{Fix}\,(\phi) = \{x \in F_n \mid x\phi = x\} \leqslant F_n.$

Two elements $u, v \in G$ are said to be conjugated, denoted $u \sim v$, if $v = g^{-1}ug$ for some $g \in G$.

Definition

The conjugacy problem for G, denoted CP(G): "Given $u, v \in G$ decide whether $u \sim v$ ".

Definition

For $\varphi \in Aut(G)$, two elements $u, v \in G$ are said to be φ -twisted conjugated, denoted $u \sim_{\varphi} v$, if $v = (g\varphi)^{-1}ug$ for some $g \in G$.

Definition

The twisted conjugacy problem for G, denoted TCP(G): "Given $\varphi \in Aut(G)$ and $u, v \in G$ decide whether $u \sim_{\varphi} v$ ".

Two elements $u, v \in G$ are said to be conjugated, denoted $u \sim v$, if $v = g^{-1}ug$ for some $g \in G$.

Definition

The conjugacy problem for G, denoted CP(G): "Given $u, v \in G$ decide whether $u \sim v$ ".

Definition

For $\varphi \in Aut(G)$, two elements $u, v \in G$ are said to be φ -twisted conjugated, denoted $u \sim_{\varphi} v$, if $v = (g\varphi)^{-1}ug$ for some $g \in G$.

Definition

The twisted conjugacy problem for G, denoted TCP(G): "Given $\varphi \in Aut(G)$ and $u, v \in G$ decide whether $u \sim_{G} v$ ".

Two elements $u, v \in G$ are said to be conjugated, denoted $u \sim v$, if $v = g^{-1}ug$ for some $g \in G$.

Definition

The conjugacy problem for G, denoted CP(G): "Given $u, v \in G$ decide whether $u \sim v$ ".

Definition

For $\varphi \in Aut(G)$, two elements $u, v \in G$ are said to be φ -twisted conjugated, denoted $u \sim_{\varphi} v$, if $v = (g\varphi)^{-1}ug$ for some $g \in G$.

Definition

The twisted conjugacy problem for G, denoted TCP(G): "Given $\varphi \in Aut(G)$ and $u, v \in G$ decide whether $u \sim_{\varphi} v$ ".

Two elements $u, v \in G$ are said to be conjugated, denoted $u \sim v$, if $v = g^{-1}ug$ for some $g \in G$.

Definition

The conjugacy problem for G, denoted CP(G): "Given $u, v \in G$ decide whether $u \sim v$ ".

Definition

For $\varphi \in Aut(G)$, two elements $u, v \in G$ are said to be φ -twisted conjugated, denoted $u \sim_{\varphi} v$, if $v = (g\varphi)^{-1}ug$ for some $g \in G$.

Definition

The twisted conjugacy problem for G, denoted TCP(G): "Given $\varphi \in Aut(G)$ and $u, v \in G$ decide whether $u \sim_{\varphi} v$ ".

Theorem

Every finitely generated, virtually

- (i) abelian, or
- (II) Iree, or
- (iii) surface, or
- (iv) polycyclic

group has solvable twisted conjugacy problem.

- (w. J.Burillo & F.Matucci) Thomson's group has solvable TCP,
- (w. J.González-Meneses) Braid group has solvable TCP,
- (with V. Romankov) Nilpotent and metabelian groups have solvable TCP.

Theorem

Every finitely generated, virtually

- (i) abelian, or
- (ii) free, or
- (iii) surface, or
- (iv) polycyclic

group has solvable twisted conjugacy problem.

- (w. J.Burillo & F.Matucci) Thomson's group has solvable TCP,
- (w. J.González-Meneses) Braid group has solvable TCP,
- (with V. Romankov) Nilpotent and metabelian groups have solvable TCP.

Theorem

Every finitely generated, virtually

- (i) abelian, or
- (ii) free, or
- (iii) surface, or
- (iv) polycyclic

group has solvable twisted conjugacy problem.

- (w. J.Burillo & F.Matucci) Thomson's group has solvable TCP,
- (w. J.González-Meneses) Braid group has solvable TCP,
- (with V. Romankov) Nilpotent and metabelian groups have solvable TCP.

Theorem

Every finitely generated, virtually

- (i) abelian, or
- (ii) free, or
- (iii) surface, or
- (iv) polycyclic

group has solvable twisted conjugacy problem.

- (w. J.Burillo & F.Matucci) Thomson's group has solvable TCP,
- (w. J.González-Meneses) Braid group has solvable TCP,
- (with V. Romankov) Nilpotent and metabelian groups have solvable TCP.

Theorem

Every finitely generated, virtually

- (i) abelian, or
- (ii) free, or
- (iii) surface, or
- (iv) polycyclic

group has solvable twisted conjugacy problem.

- (w. J.Burillo & F.Matucci) Thomson's group has solvable TCP,
- (w. J.González-Meneses) Braid group has solvable TCP,
- (with V. Romankov) Nilpotent and metabelian groups have solvable TCP.

Theorem

Every finitely generated, virtually

- (i) abelian, or
- (ii) free, or
- (iii) surface, or
- (iv) polycyclic

group has solvable twisted conjugacy problem.

- (w. J.Burillo & F.Matucci) Thomson's group has solvable TCP,
- (w. J.González-Meneses) Braid group has solvable TCP,
- (with V. Romankov) Nilpotent and metabelian groups have solvable TCP.

Theorem

Every finitely generated, virtually

- (i) abelian, or
- (ii) free, or
- (iii) surface, or
- (iv) polycyclic

group has solvable twisted conjugacy problem.

- (w. J.Burillo & F.Matucci) Thomson's group has solvable TCP,
- (w. J.González-Meneses) Braid group has solvable TCP,
- (with V. Romankov) Nilpotent and metabelian groups have solvable TCP.

Theorem

Every finitely generated, virtually

- (i) abelian, or
- (ii) free, or
- (iii) surface, or
- (iv) polycyclic

group has solvable twisted conjugacy problem.

- (w. J.Burillo & F.Matucci) Thomson's group has solvable TCP,
- (w. J.González-Meneses) Braid group has solvable TCP,
- (with V. Romankov) Nilpotent and metabelian groups have solvable TCP.

Let G be a group (given as a finite presentation) and $K \leq G$ a finite index subgroup (given by generators). Then,

- if K is characteristic and TCP(K) is solvable, then TCP(G) is solvable,
- if K is normal and TCP(K) is solvable, then CP(G) is solvable.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

There exists a group G with CP(G) solvable but TCP(G) unsolvable.

Let G be a group (given as a finite presentation) and $K \leq G$ a finite index subgroup (given by generators). Then,

- if K is characteristic and TCP(K) is solvable, then TCP(G) is solvable,
- if K is normal and TCP(K) is solvable, then CP(G) is solvable.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

There exists a group G with CP(G) solvable but TCP(G) unsolvable

Let G be a group (given as a finite presentation) and $K \leq G$ a finite index subgroup (given by generators). Then,

- if K is characteristic and TCP(K) is solvable, then TCP(G) is solvable,
- if K is normal and TCP(K) is solvable, then CP(G) is solvable.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

There exists a group G with CP(G) solvable but TCP(G) unsolvable.

Two automorphisms $\alpha, \beta \in Aut(G)$ are isogradient, denoted $\alpha \approx \beta$, if they are conjugated by a conjugation, i.e. $\exists g \in G$ such that

$$\begin{array}{ccc} \textbf{\textit{G}} & \stackrel{\gamma_g}{\rightarrow} & \textbf{\textit{G}} \\ \alpha \downarrow & \equiv & \downarrow \beta \\ \textbf{\textit{G}} & \stackrel{\gamma_g}{\rightarrow} & \textbf{\textit{G}} \end{array}$$

Observation

If G has trivial center, then

Two automorphisms $\alpha, \beta \in Aut(G)$ are isogradient, denoted $\alpha \approx \beta$, if they are conjugated by a conjugation, i.e. $\exists g \in G$ such that

$$egin{array}{cccc} G & \stackrel{\gamma_g}{
ightarrow} & G \ lpha & \downarrow & \equiv & \downarrow & eta \ G & \stackrel{\gamma_g}{
ightarrow} & G \end{array}$$

Observation

If G has trivial center, then

$$u \sim_{\varphi} v \Leftrightarrow \varphi \gamma_{u} \approx \varphi \gamma_{v} \Leftrightarrow \exists g \in G \text{ s.t. } \begin{array}{ccc} G & \xrightarrow{\gamma_{g}} & G \\ \varphi \gamma_{u} \downarrow & \equiv & \downarrow \varphi \gamma_{v}. \\ G & \xrightarrow{\gamma_{g}} & G \end{array}$$

 $TCP(F_n)$ is solvable.

- The convers is not true in general, but...

• In the diagram
$$\varphi \gamma_u \downarrow \qquad \qquad \downarrow \varphi \gamma_v,$$

- a) $X(\varphi \gamma_u)\gamma_g = X\gamma_g(\varphi \gamma_v) \iff X\varphi \in C(v^{-1}(g\varphi)^{-1}ug);$
- b) $\{x \in F_n \mid x(\varphi \gamma_u)\gamma_g = x\gamma_g(\varphi \gamma_v)\}$ is either cyclic, or the whole F_n
- So, $\varphi \gamma_u \approx \varphi \gamma_v \iff (\operatorname{Fix} \varphi \gamma_u) \gamma_g = \operatorname{Fix} \varphi \gamma_v \text{ plus rank} \geqslant 2.$

 $TCP(F_n)$ is solvable.

- $\bullet \ \varphi \gamma_u \approx \varphi \gamma_v \quad \Longrightarrow \quad (\operatorname{Fix} \varphi \gamma_u) \gamma_g = \operatorname{Fix} \varphi \gamma_v.$
- The convers is not true in general, but...

$$F_n \stackrel{\mathcal{B}}{\rightarrow} F_n$$

- In the diagram $\varphi \gamma_u \downarrow \qquad \downarrow \varphi \gamma_v,$ $F_n \xrightarrow{\gamma_g} F_n$
 - a) $X(\varphi \gamma_u)\gamma_g = X\gamma_g(\varphi \gamma_v) \iff X\varphi \in C(v^{-1}(g\varphi)^{-1}ug);$
 - b) $\{x \in F_n \mid x(\varphi \gamma_u)\gamma_g = x\gamma_g(\varphi \gamma_v)\}$ is either cyclic, or the whole F_n
- So, $\varphi \gamma_u \approx \varphi \gamma_v \iff (\operatorname{Fix} \varphi \gamma_u) \gamma_g = \operatorname{Fix} \varphi \gamma_v \text{ plus rank} \geqslant 2.$

 $TCP(F_n)$ is solvable.

- $\bullet \ \varphi \gamma_u \approx \varphi \gamma_v \quad \Longrightarrow \quad (\operatorname{Fix} \varphi \gamma_u) \gamma_g = \operatorname{Fix} \varphi \gamma_v.$
- The convers is not true in general, but...

$$F_n \stackrel{\sim}{\to} F_n$$
• In the diagram $\varphi \gamma_u \downarrow \qquad \downarrow \varphi \gamma_v$,

- In the diagram $\varphi \gamma_u \downarrow \qquad \downarrow \varphi \gamma_v,$ $F_n \stackrel{\gamma_g}{\rightarrow} F_n$
 - a) $X(\varphi \gamma_u)\gamma_g = X\gamma_g(\varphi \gamma_v) \iff X\varphi \in C(v^{-1}(g\varphi)^{-1}ug)$
 - b) $\{x \in F_n \mid x(\varphi \gamma_u)\gamma_g = x\gamma_g(\varphi \gamma_v)\}$ is either cyclic, or the whole F_n
- So, $\varphi \gamma_u \approx \varphi \gamma_v \iff (\operatorname{Fix} \varphi \gamma_u) \gamma_q = \operatorname{Fix} \varphi \gamma_v \text{ plus rank} \geqslant 2.$

 $TCP(F_n)$ is solvable.

- $\bullet \ \varphi \gamma_u \approx \varphi \gamma_v \quad \Longrightarrow \quad (\operatorname{Fix} \varphi \gamma_u) \gamma_g = \operatorname{Fix} \varphi \gamma_v.$
- The convers is not true in general, but...

• In the diagram
$$\begin{array}{ccc} F_n & \stackrel{\gamma_g}{\rightarrow} & F_n \\ \varphi \gamma_u \downarrow & & \downarrow \varphi \gamma_v, \end{array}$$

- In the diagram $\varphi\gamma_u\downarrow \qquad \downarrow \varphi\gamma_v, \ F_n \stackrel{\gamma_g}{\longrightarrow} F_n$
 - a) $x(\varphi \gamma_u)\gamma_g = x\gamma_g(\varphi \gamma_v) \iff x\varphi \in C(v^{-1}(g\varphi)^{-1}ug);$
 - b) $\{x \in F_n \mid x(\varphi \gamma_u)\gamma_g = x\gamma_g(\varphi \gamma_v)\}$ is either cyclic, or the whole F_n .
- So, $\varphi \gamma_u \approx \varphi \gamma_v \iff (\operatorname{Fix} \varphi \gamma_u) \gamma_q = \operatorname{Fix} \varphi \gamma_v \text{ plus rank} \geqslant 2.$

 $TCP(F_n)$ is solvable.

- $\bullet \ \varphi \gamma_u \approx \varphi \gamma_v \quad \Longrightarrow \quad (\operatorname{Fix} \varphi \gamma_u) \gamma_g = \operatorname{Fix} \varphi \gamma_v.$
- The convers is not true in general, but...

• In the diagram
$$\begin{array}{ccc} F_n & \stackrel{\gamma_g}{\rightarrow} & F_n \\ \varphi \gamma_u \downarrow & & \downarrow \varphi \gamma_v, \\ F_n & \stackrel{\gamma_g}{\rightarrow} & F_n \end{array}$$

- a) $x(\varphi \gamma_u)\gamma_g = x\gamma_g(\varphi \gamma_v) \iff x\varphi \in C(v^{-1}(g\varphi)^{-1}ug);$
- b) $\{x \in F_n \mid x(\varphi \gamma_u)\gamma_g = x\gamma_g(\varphi \gamma_v)\}\$ is either cyclic, or the whole F_n .
- So, $\varphi \gamma_u \approx \varphi \gamma_v \iff (\operatorname{Fix} \varphi \gamma_u) \gamma_q = \operatorname{Fix} \varphi \gamma_v \text{ plus rank} \geqslant 2.$

 $TCP(F_n)$ is solvable.

- $\bullet \ \varphi \gamma_u \approx \varphi \gamma_v \quad \Longrightarrow \quad (\operatorname{Fix} \varphi \gamma_u) \gamma_g = \operatorname{Fix} \varphi \gamma_v.$
- The convers is not true in general, but...

• In the diagram
$$\begin{array}{ccc} F_n & \stackrel{\gamma_g}{\rightarrow} & F_n \\ \varphi \gamma_u \downarrow & & \downarrow \varphi \gamma_v, \\ F_n & \stackrel{\gamma_g}{\rightarrow} & F_n \end{array}$$

- a) $X(\varphi \gamma_u)\gamma_g = X\gamma_g(\varphi \gamma_v) \iff X\varphi \in C(v^{-1}(g\varphi)^{-1}ug);$
- b) $\{x \in F_n \mid x(\varphi \gamma_u)\gamma_g = x\gamma_g(\varphi \gamma_v)\}\$ is either cyclic, or the whole F_n .
- So, $\varphi \gamma_u \approx \varphi \gamma_v \iff (\operatorname{Fix} \varphi \gamma_u) \gamma_g = \operatorname{Fix} \varphi \gamma_v \text{ plus rank} \geqslant 2.$

Idea is to force the diagram to commute.

- Extend to $F_n * \langle z \rangle$ and $\hat{\varphi} \colon F_n * \langle z \rangle \to F_n * \langle z \rangle$, sending z to uzu^{-1} .
- Now, if $z\gamma_g \in \operatorname{Fix}(\hat{\varphi}\gamma_v)$ \Rightarrow z commutes in the diagram . \Rightarrow $z \in C(v^{-1}(g\varphi)^{-1}ug)$ \Rightarrow $v^{-1}(g\varphi)^{-1}ug = 1$ \Rightarrow $u \sim_{\varphi} v$
- Hence, $u \sim_{\varphi} v \iff z\gamma_g \in \text{Fix}(\hat{\varphi}\gamma_v)$ for some $g \in F_n$.

Idea is to force the diagram to commute.

• Extend to $F_n * \langle z \rangle$ and $\hat{\varphi} \colon F_n * \langle z \rangle \to F_n * \langle z \rangle$, sending z to uzu^{-1} .

• Now, if
$$z\gamma_g \in \operatorname{Fix}(\hat{\varphi}\gamma_v)$$
 $\Rightarrow z$ commutes in the diagram .
 $\Rightarrow z \in C(v^{-1}(g\varphi)^{-1}ug)$ $\Rightarrow v^{-1}(g\varphi)^{-1}ug = 1$ $\Rightarrow u \sim_{\varphi} v$

• Hence,
$$u \sim_{\varphi} v \iff z\gamma_g \in \text{Fix}(\hat{\varphi}\gamma_v) \text{ for some } g \in F_n$$
.

- Extend to $F_n * \langle z \rangle$ and $\hat{\varphi} : F_n * \langle z \rangle \to F_n * \langle z \rangle$, sending z to uzu^{-1} .
- Now, if $z\gamma_g \in \operatorname{Fix}(\hat{\varphi}\gamma_v)$ \Rightarrow z commutes in the diagram $z \in C(v^{-1}(g\varphi)^{-1}ug)$ $z \in C(v^{-1}(g\varphi)^{-1}ug)$ $z \in C(v^{-1}(g\varphi)^{-1}ug)$ $z \in C(v^{-1}(g\varphi)^{-1}ug)$ $z \in C(v^{-1}(g\varphi)^{-1}ug)$
- Hence, $u \sim_{\varphi} v \iff z\gamma_g \in \text{Fix}\,(\hat{\varphi}\gamma_v)$ for some $g \in F_n$.

- Extend to $F_n * \langle z \rangle$ and $\hat{\varphi} \colon F_n * \langle z \rangle \to F_n * \langle z \rangle$, sending z to uzu^{-1} .
- Now, if $z\gamma_g \in \operatorname{Fix}(\hat{\varphi}\gamma_v)$ \Rightarrow z commutes in the diagram $z \in C(v^{-1}(g\varphi)^{-1}ug)$ $\Rightarrow v^{-1}(g\varphi)^{-1}ug = 1$ $\Rightarrow u \sim_{\varphi} v$
- Hence, $u \sim_{\varphi} v \iff z\gamma_g \in \text{Fix}\,(\hat{\varphi}\gamma_v)$ for some $g \in F_n$.

- Extend to $F_n * \langle z \rangle$ and $\hat{\varphi} \colon F_n * \langle z \rangle \to F_n * \langle z \rangle$, sending z to uzu^{-1} .
- Now, if $z\gamma_g \in \operatorname{Fix}(\hat{\varphi}\gamma_v)$ \Rightarrow z commutes in the diagram $z \in C(v^{-1}(g\varphi)^{-1}ug)$ $\Rightarrow v^{-1}(g\varphi)^{-1}ug = 1$ $\Rightarrow u \sim_{\varphi} v$
- Hence, $u \sim_{\varphi} v \iff z\gamma_g \in \text{Fix}\,(\hat{\varphi}\gamma_v)$ for some $g \in F_n$.

- Extend to $F_n * \langle z \rangle$ and $\hat{\varphi} \colon F_n * \langle z \rangle \to F_n * \langle z \rangle$, sending z to uzu^{-1} .
- Now, if $z\gamma_g \in \operatorname{Fix}(\hat{\varphi}\gamma_v)$ \Rightarrow z commutes in the diagram . \Rightarrow $z \in C(v^{-1}(g\varphi)^{-1}ug)$ \Rightarrow $v^{-1}(g\varphi)^{-1}ug = 1$ \Rightarrow $u \sim_{\varphi} v$
- Hence, $u \sim_{\varphi} v \iff z\gamma_g \in \text{Fix}\,(\hat{\varphi}\gamma_v)$ for some $g \in F_n$.

- Extend to $F_n * \langle z \rangle$ and $\hat{\varphi} \colon F_n * \langle z \rangle \to F_n * \langle z \rangle$, sending z to uzu^{-1} .
- Now, if $z\gamma_g \in \operatorname{Fix}(\hat{\varphi}\gamma_v)$ \Rightarrow z commutes in the diagram . \Rightarrow $z \in C(v^{-1}(g\varphi)^{-1}ug)$ \Rightarrow $v^{-1}(g\varphi)^{-1}ug = 1$ \Rightarrow $u \sim_{\varphi} v$
- Hence, $u \sim_{\varphi} v \iff z\gamma_g \in \text{Fix}(\hat{\varphi}\gamma_v)$ for some $g \in F_n$.

Algorithm is the following: given $\varphi \in \operatorname{Aut}(F_n)$ and $u, v \in F_n$:

- 1- Extend φ to $\hat{\varphi} \colon F_n * \langle z \rangle \to F_n * \langle z \rangle$, sending z to uzu^{-1} .
- 2- Compute a basis for Fix $(\hat{arphi}\gamma_{\it V})$ using

Γheorem (Maslakova)

Fixed subgroups of automorphisms of free groups are computable.

3- Check whether Fix $(\hat{\varphi}\gamma_{\nu})$ contains $z\gamma_{g}$ for some $g\in F_{n}$, using Stallings' automata. \square

Algorithm is the following: given $\varphi \in Aut(F_n)$ and $u, v \in F_n$:

- 1- Extend φ to $\hat{\varphi} \colon F_n * \langle z \rangle \to F_n * \langle z \rangle$, sending z to uzu^{-1} .
- 2- Compute a basis for Fix $(\hat{\varphi}\gamma_{\nu})$ using

Γheorem (Maslakova)

Fixed subgroups of automorphisms of free groups are computable.

3- Check whether Fix $(\hat{\varphi}\gamma_{\nu})$ contains $z\gamma_{g}$ for some $g\in F_{n}$, using Stallings' automata. \square

Algorithm is the following: given $\varphi \in \operatorname{Aut}(F_n)$ and $u, v \in F_n$:

- 1- Extend φ to $\hat{\varphi} \colon F_n * \langle z \rangle \to F_n * \langle z \rangle$, sending z to uzu^{-1} .
- 2- Compute a basis for Fix $(\hat{\varphi}\gamma_{\nu})$ using

Theorem (Maslakova)

Fixed subgroups of automorphisms of free groups are computable.

3- Check whether Fix $(\hat{\varphi}\gamma_{\nu})$ contains $z\gamma_g$ for some $g\in F_n$, using Stallings' automata. \square

Algorithm is the following: given $\varphi \in \operatorname{Aut}(F_n)$ and $u, v \in F_n$:

- 1- Extend φ to $\hat{\varphi} \colon F_n * \langle z \rangle \to F_n * \langle z \rangle$, sending z to uzu^{-1} .
- 2- Compute a basis for Fix $(\hat{\varphi}\gamma_{\nu})$ using

Theorem (Maslakova)

Fixed subgroups of automorphisms of free groups are computable.

3- Check whether Fix $(\hat{\varphi}\gamma_{\nu})$ contains $z\gamma_{g}$ for some $g\in F_{n}$, using Stallings' automata. \square

Outline

- The twisted conjugacy problem
- The conjugacy problem for free-by-cyclic groups
- 3 The main theorem
- 4 The conjugacy problem for free-by-free groups
- 5 The conjugacy problem for (free abelian)-by-free groups

Let $F_n = \langle x_1, \dots, x_n \mid \rangle$ be a free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$, and let $\varphi \in Aut(F_n)$. The free-by-cyclic group $F_n \rtimes_{\varphi} \mathbb{Z}$ is defined as

$$F_n \rtimes_{\varphi} \mathbb{Z} = \langle x_1, \dots, x_n, t \mid t^{-1}x_it = x_i\varphi \rangle$$

= $\langle x_1, \dots, x_n, t \mid x_it = t(x_i\varphi) \rangle$.

Move *t*'s to left & get usual normal forms, $t^r w$, with $r \in \mathbb{Z}$, $w \in F_n$.

Example

$$tbt^{2}a^{-2}t^{-1}cta^{-1}b^{-1} = tbt^{2}a^{-2}t^{-1}tb^{-2}cbaa^{-1}b^{-1}$$

= $tbt^{2}a^{-2}b^{-2}c$
= $tt^{2}ba^{2}a^{-2}b^{-2}c$
= $t^{3}(b^{-1}c)$.

Let $F_n = \langle x_1, \dots, x_n \mid \rangle$ be a free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$, and let $\varphi \in Aut(F_n)$. The free-by-cyclic group $F_n \rtimes_{\varphi} \mathbb{Z}$ is defined as

$$F_n \rtimes_{\varphi} \mathbb{Z} = \langle x_1, \dots, x_n, t \mid t^{-1}x_i t = x_i \varphi \rangle$$

= $\langle x_1, \dots, x_n, t \mid x_i t = t(x_i \varphi) \rangle$.

Move *t*'s to left & get usual normal forms, $t^r w$, with $r \in \mathbb{Z}$, $w \in F_n$.

Example

$$tbt^{2}a^{-2}t^{-1}cta^{-1}b^{-1} = tbt^{2}a^{-2}t^{-1}tb^{-2}cbaa^{-1}b^{-1}$$

= $tbt^{2}a^{-2}b^{-2}c$
= $tt^{2}ba^{2}a^{-2}b^{-2}c$
= $t^{3}(b^{-1}c)$.

Let $F_n = \langle x_1, \dots, x_n \mid \rangle$ be a free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$, and let $\varphi \in Aut(F_n)$. The free-by-cyclic group $F_n \rtimes_{\varphi} \mathbb{Z}$ is defined as

$$F_n \rtimes_{\varphi} \mathbb{Z} = \langle x_1, \dots, x_n, t \mid t^{-1}x_i t = x_i \varphi \rangle$$

= $\langle x_1, \dots, x_n, t \mid x_i t = t(x_i \varphi) \rangle$.

Move *t*'s to left & get usual normal forms, $t^r w$, with $r \in \mathbb{Z}$, $w \in F_n$.

Example

$$tbt^{2}a^{-2}t^{-1}cta^{-1}b^{-1} = tbt^{2}a^{-2}t^{-1}tb^{-2}cbaa^{-1}b^{-1}$$

= $tbt^{2}a^{-2}b^{-2}c$
= $tt^{2}ba^{2}a^{-2}b^{-2}c$
= $t^{3}(b^{-1}c)$.

Let $F_n = \langle x_1, \dots, x_n \mid \rangle$ be a free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$, and let $\varphi \in Aut(F_n)$. The free-by-cyclic group $F_n \rtimes_{\varphi} \mathbb{Z}$ is defined as

$$F_n \rtimes_{\varphi} \mathbb{Z} = \langle x_1, \dots, x_n, t \mid t^{-1}x_i t = x_i \varphi \rangle$$

= $\langle x_1, \dots, x_n, t \mid x_i t = t(x_i \varphi) \rangle$.

Move *t*'s to left & get usual normal forms, $t^r w$, with $r \in \mathbb{Z}$, $w \in F_n$.

Example

$$tbt^{2}a^{-2}t^{-1}cta^{-1}b^{-1} = tbt^{2}a^{-2}t^{-1}tb^{-2}cbaa^{-1}b^{-1}$$

= $tbt^{2}a^{-2}b^{-2}c$
= $tt^{2}ba^{2}a^{-2}b^{-2}c$
= $t^{3}(b^{-1}c)$.

Let $F_n = \langle x_1, \dots, x_n \mid \rangle$ be a free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$, and let $\varphi \in Aut(F_n)$. The free-by-cyclic group $F_n \rtimes_{\varphi} \mathbb{Z}$ is defined as

$$F_n \rtimes_{\varphi} \mathbb{Z} = \langle x_1, \dots, x_n, t \mid t^{-1}x_i t = x_i \varphi \rangle$$

= $\langle x_1, \dots, x_n, t \mid x_i t = t(x_i \varphi) \rangle$.

Move *t*'s to left & get usual normal forms, $t^r w$, with $r \in \mathbb{Z}$, $w \in F_n$.

Example

$$tbt^{2}a^{-2}t^{-1}cta^{-1}b^{-1} = tbt^{2}a^{-2}t^{-1}tb^{-2}cbaa^{-1}b^{-1}$$

= $tbt^{2}a^{-2}b^{-2}c$
= $tt^{2}ba^{2}a^{-2}b^{-2}c$
= $t^{3}(b^{-1}c)$.

Let $F_n = \langle x_1, \dots, x_n \mid \rangle$ be a free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$, and let $\varphi \in Aut(F_n)$. The free-by-cyclic group $F_n \rtimes_{\varphi} \mathbb{Z}$ is defined as

$$F_n \rtimes_{\varphi} \mathbb{Z} = \langle x_1, \dots, x_n, t \mid t^{-1}x_i t = x_i \varphi \rangle$$

= $\langle x_1, \dots, x_n, t \mid x_i t = t(x_i \varphi) \rangle$.

Move *t*'s to left & get usual normal forms, $t^r w$, with $r \in \mathbb{Z}$, $w \in F_n$.

Example

$$tbt^{2}a^{-2}t^{-1}cta^{-1}b^{-1} = tbt^{2}a^{-2}t^{-1}tb^{-2}cbaa^{-1}b^{-1}$$

$$= tbt^{2}a^{-2}b^{-2}c$$

$$= tt^{2}ba^{2}a^{-2}b^{-2}c$$

$$= t^{3}(b^{-1}c).$$

Let $F_n = \langle x_1, \dots, x_n \mid \rangle$ be a free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$, and let $\varphi \in Aut(F_n)$. The free-by-cyclic group $F_n \rtimes_{\varphi} \mathbb{Z}$ is defined as

$$F_n \rtimes_{\varphi} \mathbb{Z} = \langle x_1, \dots, x_n, t \mid t^{-1}x_i t = x_i \varphi \rangle$$

= $\langle x_1, \dots, x_n, t \mid x_i t = t(x_i \varphi) \rangle$.

Move *t*'s to left & get usual normal forms, $t^r w$, with $r \in \mathbb{Z}$, $w \in F_n$.

Example

$$tbt^{2}a^{-2}t^{-1}cta^{-1}b^{-1} = tbt^{2}a^{-2}t^{-1}tb^{-2}cbaa^{-1}b^{-1}$$

$$= tbt^{2}a^{-2}b^{-2}c$$

$$= tt^{2}ba^{2}a^{-2}b^{-2}c$$

$$= t^{3}(b^{-1}c).$$

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

•
$$(g^{-1}t^{-k})(t^ru)(t^kg) = g^{-1}t^r(u\varphi^k)g = t^r(g\varphi^r)^{-1}(u\varphi^k)g.$$

$$\begin{array}{ccc} & t^r u \text{ and } t^s v & \Longleftrightarrow & r = s \\ & \text{conj. in } M_{\varphi} & \Longleftrightarrow & v \sim_{\varphi^r} (u\varphi^k) \text{ for some } k \in \mathbb{Z}. \end{array}$$

- **Case 1**: r ≠ 0
- To reduce to finitely many k's, note that $u \sim_{\varphi} u\varphi$ (because $u = (u\varphi)^{-1}(u\varphi)u$), so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm \lambda r}$; hence,

$$t^r u$$
 and $t^s v$ conj. in M_{φ} \iff $r=s$ $v\sim_{\varphi^r}(u\varphi^k)$ for some $k=0,\ldots,r-1$.

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

- $(g^{-1}t^{-k})(t^ru)(t^kg) = g^{-1}t^r(u\varphi^k)g = t^r(g\varphi^r)^{-1}(u\varphi^k)g$.
- $\begin{array}{ccc} & t^r u \text{ and } t^s v & \Longleftrightarrow & r = s \\ & \text{conj. in } M_{\varphi} & \Longleftrightarrow & v \sim_{\varphi^r} (u\varphi^k) \text{ for some } k \in \mathbb{Z}. \end{array}$
- **Case 1:** r ≠ 0
- To reduce to finitely many k's, note that $u \sim_{\varphi} u\varphi$ (because $u = (u\varphi)^{-1}(u\varphi)u$), so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm \lambda r}$; hence,

$$t^r u$$
 and $t^s v$ conj. in M_{φ} \iff $r=s$ $v\sim_{\varphi^r}(u\varphi^k)$ for some $k=0,\ldots,r-1$.

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

- $(g^{-1}t^{-k})(t^ru)(t^kg) = g^{-1}t^r(u\varphi^k)g = t^r(g\varphi^r)^{-1}(u\varphi^k)g$.
- $\begin{array}{ccc} & t^r u \text{ and } t^s v & \Longleftrightarrow & r = s \\ & \text{conj. in } M_{\varphi} & \Longleftrightarrow & v \sim_{\varphi^r} (u\varphi^k) \text{ for some } k \in \mathbb{Z}. \end{array}$
- **Case 1**: r ≠ 0
- To reduce to finitely many k's, note that $u \sim_{\varphi} u\varphi$ (because $u = (u\varphi)^{-1}(u\varphi)u$), so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm \lambda r}$; hence,

$$t^r u$$
 and $t^s v$ conj. in M_{φ} \iff $r=s$ $v\sim_{\varphi^r}(u\varphi^k)$ for some $k=0,\ldots,r-1$.

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

•
$$(g^{-1}t^{-k})(t^ru)(t^kg) = g^{-1}t^r(u\varphi^k)g = t^r(g\varphi^r)^{-1}(u\varphi^k)g$$
.

$$t^r u$$
 and $t^s v$ \iff $r = s$ $v \sim_{\varphi^r} (u\varphi^k)$ for some $k \in \mathbb{Z}$.

- **Case 1**: r ≠ 0
- To reduce to finitely many k's, note that $u \sim_{\varphi} u\varphi$ (because $u = (u\varphi)^{-1}(u\varphi)u$), so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm \lambda r}$; hence,

$$t^r u$$
 and $t^s v$ conj. in M_{φ} \iff $r=s$ $v\sim_{\varphi^r}(u\varphi^k)$ for some $k=0,\ldots,r-1$.

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

- $(g^{-1}t^{-k})(t^ru)(t^kg) = g^{-1}t^r(u\varphi^k)g = t^r(g\varphi^r)^{-1}(u\varphi^k)g$.
- **►** Case 1: $r \neq 0$
- To reduce to finitely many k's, note that $u \sim_{\varphi} u\varphi$ (because $u = (u\varphi)^{-1}(u\varphi)u$), so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm \lambda r}$; hence,

$$t^r u$$
 and $t^s v$ conj. in M_{φ} \iff $r=s$ $v\sim_{\varphi^r}(u\varphi^k)$ for some $k=0,\ldots,r-1$.

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

- $(g^{-1}t^{-k})(t^ru)(t^kg) = g^{-1}t^r(u\varphi^k)g = t^r(g\varphi^r)^{-1}(u\varphi^k)g.$
- **►** Case 1: $r \neq 0$
- To reduce to finitely many k's, note that $u \sim_{\varphi} u\varphi$ (because $u = (u\varphi)^{-1}(u\varphi)u$), so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm \lambda r}$; hence,

$$t^r u$$
 and $t^s v$ \iff $r = s$ $v \sim_{\varphi^r} (u \varphi^k)$ for some $k = 0, \dots, r-1$.

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $M_{\varphi} = F_n \rtimes_{\varphi} \mathbb{Z}$.

- $(g^{-1}t^{-k})(t^ru)(t^kg) = g^{-1}t^r(u\varphi^k)g = t^r(g\varphi^r)^{-1}(u\varphi^k)g$.
- **►** Case 1: $r \neq 0$
- To reduce to finitely many k's, note that $u \sim_{\varphi} u\varphi$ (because $u = (u\varphi)^{-1}(u\varphi)u$), so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm \lambda r}$; hence,

$$t^r u$$
 and $t^s v$ conj. in M_{φ} \iff $r = s$ $v \sim_{\varphi^r} (u \varphi^k)$ for some $k = 0, \dots, r-1$.

For every $\varphi \in Aut(F_n)$, $CP(F_n \rtimes_{\varphi} \mathbb{Z})$ is solvable.

Proof. Let $t^r u$, $t^s v$, $t^k g$ be arbitrary elements in $M_{\omega} = F_n \rtimes_{\omega} \mathbb{Z}$.

- $(g^{-1}t^{-k})(t^ru)(t^kg) = g^{-1}t^r(u\varphi^k)g = t^r(g\varphi^r)^{-1}(u\varphi^k)g$.
- **►** Case 1: $r \neq 0$
- To reduce to finitely many k's, note that $u \sim_{\varphi} u\varphi$ (because $u = (u\varphi)^{-1}(u\varphi)u$), so $u\varphi^k \sim_{\varphi^r} u\varphi^{k\pm \lambda r}$; hence,

$$t^r u$$
 and $t^s v$ conj. in M_{φ} \iff $r=s$ $v\sim_{\varphi^r}(u\varphi^k)$ for some $k=0,\ldots,r-1$.

► Case 2: *r* = 0

Still infinitely many k's:

$$u$$
 and v conj. in M_{arphi} \iff $v \sim u arphi^k$ for some $k \in \mathbb{Z}$

• This is precisely Brinkmann's result:

Theorem (Brinkmann, 2006)

Given $\phi\colon F_n \to F_n$ and $u,v \in F_n$, it is decidable whether $v \sim u\phi^k$ for some $k \in \mathbb{Z}$.

• Hence, $CP(M_{\varphi})$ is solvable. \square

- **▶ Case 2:** *r* = 0
- Still infinitely many k's:

$$u$$
 and v conj. in M_{φ} \iff $v \sim u \varphi^k$ for some $k \in \mathbb{Z}$.

• This is precisely Brinkmann's result:

Theorem (Brinkmann, 2006)

Given $\phi\colon F_n \to F_n$ and $u,v \in F_n$, it is decidable whether $v \sim u\phi^k$ for some $k \in \mathbb{Z}$.

• Hence, $CP(M_{\odot})$ is solvable. \square

- **Case 2:** r = 0
- Still infinitely many k's:

$$u$$
 and v conj. in M_{φ} \iff $v \sim u \varphi^k$ for some $k \in \mathbb{Z}$.

This is precisely Brinkmann's result:

Theorem (Brinkmann, 2006)

Given $\phi \colon F_n \to F_n$ and $u, v \in F_n$, it is decidable whether $v \sim u\phi^k$ for some $k \in \mathbb{Z}$.

• Hence, $CP(M_{\odot})$ is solvable. \square

- **Case 2:** r = 0
- Still infinitely many k's:

$$u$$
 and v conj. in M_{φ} \iff $v \sim u \varphi^k$ for some $k \in \mathbb{Z}$.

This is precisely Brinkmann's result:

Theorem (Brinkmann, 2006)

Given $\phi \colon F_n \to F_n$ and $u, v \in F_n$, it is decidable whether $v \sim u\phi^k$ for some $k \in \mathbb{Z}$.

• Hence, $CP(M_{\varphi})$ is solvable. \square

Outline

- 1 The twisted conjugacy problem
- The conjugacy problem for free-by-cyclic groups
- The main theorem
- The conjugacy problem for free-by-free groups
- 5 The conjugacy problem for (free abelian)-by-free groups

Theorem (Bogopolski-Martino-V., 2008)

Let

$$1 \longrightarrow F \stackrel{\alpha}{\longrightarrow} G \stackrel{\beta}{\longrightarrow} H \longrightarrow 1$$

be an algorithmic short exact sequence of groups such that

- (i) TCP(F) is solvable,
- (ii) CP(H) is solvable, and
- (iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h,1}, \ldots, z_{h,t_h} \in H$ such that

$$C_H(h) = \langle h \rangle z_{h,1} \sqcup \cdots \sqcup \langle h \rangle z_{h,t_h}.$$

Then,

$$CP(G) ext{ is solvable} \iff egin{array}{cccc} A_G = \left\{ egin{array}{cccc} \gamma_g \colon F &
ightarrow & F \ x & \mapsto & g^{-1}xg \end{array} \middle| g \in G
ight\} \ \leqslant Aut(F) ext{ is orbit decidable}. \end{array}$$

A subgroup $A \leq Aut(F)$ is said to be orbit decidable (O.D.) if \exists an algorithm s.t., given $u, v \in F$ decides whether $v \sim u\alpha$ for some $\alpha \in A$.

Previous result in this language:

Theorem (Brinkmann, 2006)

Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem

A subgroup $A \leq Aut(F)$ is said to be orbit decidable (O.D.) if \exists an algorithm s.t., given $u, v \in F$ decides whether $v \sim u\alpha$ for some $\alpha \in A$.

Previous result in this language:

Theorem (Brinkmann, 2006)

Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem

A subgroup $A \leq Aut(F)$ is said to be orbit decidable (O.D.) if \exists an algorithm s.t., given $u, v \in F$ decides whether $v \sim u\alpha$ for some $\alpha \in A$.

Previous result in this language:

Theorem (Brinkmann, 2006)

Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

Outline

- The twisted conjugacy problem
- The conjugacy problem for free-by-cyclic groups
- The main theorem
- 4 The conjugacy problem for free-by-free groups
- 5 The conjugacy problem for (free abelian)-by-free groups

Let $F_n = \langle x_1, \dots, x_n \mid \rangle$ be the free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$, and let $\varphi_1, \dots, \varphi_m \in Aut(F_n)$. The free-by-free group $F_n \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ is

$$F_n \rtimes_{\varphi_1,\ldots,\varphi_m} F_m = \langle x_1,\ldots,x_n, t_1,\ldots,t_m \mid t_j^{-1} x_i t_j = x_i \varphi_j \rangle.$$

And this sequence satisfies (i), (ii) and (iii):

$$1 \longrightarrow F_n \longrightarrow F_n \rtimes_{\varphi_1,...,\varphi_m} F_m \longrightarrow F_m \longrightarrow 1$$

So.

$$CP(F_n \rtimes_{\varphi_1,\ldots,\varphi_m} F_m)$$
 is solvable $\Leftrightarrow \langle \varphi_1,\ldots,\varphi_m \rangle \leqslant Aut(F_n)$ is O.D.

Let $F_n = \langle x_1, \dots, x_n \mid \rangle$ be the free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$, and let $\varphi_1, \dots, \varphi_m \in Aut(F_n)$. The free-by-free group $F_n \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ is

$$F_n \rtimes_{\varphi_1,\ldots,\varphi_m} F_m = \langle x_1,\ldots,x_n, t_1,\ldots,t_m \mid t_j^{-1} x_i t_j = x_i \varphi_j \rangle.$$

And this sequence satisfies (i), (ii) and (iii):

$$1 \longrightarrow F_n \longrightarrow F_n \rtimes_{\varphi_1, \dots, \varphi_m} F_m \longrightarrow F_m \longrightarrow 1$$

$$CP(F_n \rtimes_{\varphi_1,\ldots,\varphi_m} F_m)$$
 is solvable $\Leftrightarrow \langle \varphi_1,\ldots,\varphi_m \rangle \leqslant Aut(F_n)$ is O.D.

Let $F_n = \langle x_1, \dots, x_n \mid \rangle$ be the free group on $\{x_1, \dots, x_n\}$ $(n \ge 2)$, and let $\varphi_1, \dots, \varphi_m \in Aut(F_n)$. The free-by-free group $F_n \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ is

$$F_n \rtimes_{\varphi_1,\ldots,\varphi_m} F_m = \langle x_1,\ldots,x_n, t_1,\ldots,t_m \mid t_j^{-1} x_i t_j = x_i \varphi_j \rangle.$$

And this sequence satisfies (i), (ii) and (iii):

$$1 \longrightarrow F_n \longrightarrow F_n \rtimes_{\varphi_1, \dots, \varphi_m} F_m \longrightarrow F_m \longrightarrow 1$$

$$CP(F_n \rtimes_{\varphi_1,\ldots,\varphi_m} F_m)$$
 is solvable $\Leftrightarrow \langle \varphi_1,\ldots,\varphi_m \rangle \leqslant Aut(F_n)$ is O.D.

Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

Theorem (Whitehead)

The full $Aut(F_n)$ is O.D.

Corollary

Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

Theorem (Whitehead)

The full $Aut(F_n)$ is O.D.

Corollary

Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

Theorem (Whitehead)

The full $Aut(F_n)$ is O.D.

Corollary

Cyclic subgroups of $Aut(F_n)$ are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.

Theorem (Whitehead)

The full $Aut(F_n)$ is O.D.

Corollary

Finite index subgroups of $Aut(F_n)$ are O.D.

Corollary

If $\langle \varphi_1, \dots, \varphi_m \rangle$ is of finite index in Aut (F_n) then $F_n \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $Aut(F_2)$ is O.D.

Corollary

Every F₂-by-free group has solvable conjugacy problem.

Finite index subgroups of $Aut(F_n)$ are O.D.

Corollary

If $\langle \varphi_1, \dots, \varphi_m \rangle$ is of finite index in $Aut(F_n)$ then $F_n \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $Aut(F_2)$ is O.D.

Corollary

Every F2-by-free group has solvable conjugacy problem.

Finite index subgroups of $Aut(F_n)$ are O.D.

Corollary

If $\langle \varphi_1, \dots, \varphi_m \rangle$ is of finite index in $Aut(F_n)$ then $F_n \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $Aut(F_2)$ is O.D.

Corollary

Every F2-by-free group has solvable conjugacy problem.

Finite index subgroups of $Aut(F_n)$ are O.D.

Corollary

If $\langle \varphi_1, \dots, \varphi_m \rangle$ is of finite index in $Aut(F_n)$ then $F_n \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $Aut(F_2)$ is O.D.

Corollary

Every F₂-by-free group has solvable conjugacy problem.

Theorem (Miller, 70's)

There are free-by-free groups with unsolvable conjugacy problem.

Corollary

There exist 14 automorphisms $\varphi_1, \ldots, \varphi_{14} \in Aut(F_3)$ such that $\langle \varphi_1, \ldots, \varphi_{14} \rangle \leqslant Aut(F_3)$ is orbit undecidable.

Theorem (Miller, 70's)

There are free-by-free groups with unsolvable conjugacy problem.

Corollary

There exist 14 automorphisms $\varphi_1, \ldots, \varphi_{14} \in Aut(F_3)$ such that $\langle \varphi_1, \ldots, \varphi_{14} \rangle \leqslant Aut(F_3)$ is orbit undecidable.

Theorem (Miller, 70's)

There are free-by-free groups with unsolvable conjugacy problem.

Corollary

There exist 14 automorphisms $\varphi_1, \ldots, \varphi_{14} \in Aut(F_3)$ such that $\langle \varphi_1, \ldots, \varphi_{14} \rangle \leqslant Aut(F_3)$ is orbit undecidable.

Outline

- 1 The twisted conjugacy problem
- The conjugacy problem for free-by-cyclic groups
- The main theorem
- 4 The conjugacy problem for free-by-free groups
- 5 The conjugacy problem for (free abelian)-by-free groups

Let $\mathbb{Z}^n = \langle x_1, \dots, x_n \mid [x_i, x_j] \rangle$ be the free abelian group of rank $n \geq 2$, and let $M_1, \dots, M_m \in Aut(\mathbb{Z}^n) = GL_n(\mathbb{Z})$. The (free abelian)-by-free group $\mathbb{Z}^n \rtimes_{M_1, \dots, M_m} F_m$ is defined as

$$F_n \rtimes_{M_1,...,M_m} F_m = \langle x_1,...,x_n, t_1,...,t_m \mid t_j^{-1} x_i t_j = x_i M_j, [x_i,x_j] = 1 \rangle.$$

And this sequence, again, satisfies (i), (ii) and (iii):

$$1 \longrightarrow \mathbb{Z}^n \longrightarrow \mathbb{Z}^n \rtimes_{M_1, \dots, M_m} F_m \longrightarrow F_m \longrightarrow 1$$

$$CP(\mathbb{Z}^n \rtimes_{M_1,\ldots,M_m} F_m)$$
 is solvable $\Leftrightarrow \langle M_1,\ldots,M_m \rangle \leqslant GL_n(\mathbb{Z})$ is O.D.

Let $\mathbb{Z}^n = \langle x_1, \dots, x_n \mid [x_i, x_j] \rangle$ be the free abelian group of rank $n \geq 2$, and let $M_1, \dots, M_m \in Aut(\mathbb{Z}^n) = GL_n(\mathbb{Z})$. The (free abelian)-by-free group $\mathbb{Z}^n \rtimes_{M_1, \dots, M_m} F_m$ is defined as

$$F_n \rtimes_{M_1,...,M_m} F_m = \langle x_1,...,x_n, t_1,...,t_m \mid t_j^{-1} x_i t_j = x_i M_j, [x_i,x_j] = 1 \rangle.$$

And this sequence, again, satisfies (i), (ii) and (iii):

$$1 \longrightarrow \mathbb{Z}^n \longrightarrow \mathbb{Z}^n \rtimes_{M_1, \dots, M_m} F_m \longrightarrow F_m \longrightarrow 1$$

$$CP(\mathbb{Z}^n \rtimes_{M_1,\ldots,M_m} F_m)$$
 is solvable $\Leftrightarrow \langle M_1,\ldots,M_m \rangle \leqslant GL_n(\mathbb{Z})$ is O.D.

Let $\mathbb{Z}^n = \langle x_1, \dots, x_n \mid [x_i, x_j] \rangle$ be the free abelian group of rank $n \geq 2$, and let $M_1, \dots, M_m \in Aut(\mathbb{Z}^n) = GL_n(\mathbb{Z})$. The (free abelian)-by-free group $\mathbb{Z}^n \rtimes_{M_1, \dots, M_m} F_m$ is defined as

$$F_n \rtimes_{M_1,...,M_m} F_m = \langle x_1,...,x_n, t_1,...,t_m \mid t_j^{-1} x_i t_j = x_i M_j, [x_i,x_j] = 1 \rangle.$$

And this sequence, again, satisfies (i), (ii) and (iii):

$$1 \longrightarrow \mathbb{Z}^n \longrightarrow \mathbb{Z}^n \rtimes_{M_1, \dots, M_m} F_m \longrightarrow F_m \longrightarrow 1$$

$$CP(\mathbb{Z}^n \rtimes_{M_1,...,M_m} F_m)$$
 is solvable $\Leftrightarrow \langle M_1,...,M_m \rangle \leqslant GL_n(\mathbb{Z})$ is O.D.

Cyclic subgroups of $GL_n(\mathbb{Z})$ are O.D.

Corollary

 \mathbb{Z}^n -by- \mathbb{Z} groups have solvable conjugacy problem.

Theorem (elementary)

The full $GL_n(\mathbb{Z})$ is O.D.

Corollary

Cyclic subgroups of $GL_n(\mathbb{Z})$ are O.D.

Corollary

 \mathbb{Z}^n -by- \mathbb{Z} groups have solvable conjugacy problem.

Theorem (elementary)

The full $GL_n(\mathbb{Z})$ is O.D.

Corollary

Cyclic subgroups of $GL_n(\mathbb{Z})$ are O.D.

Corollary

 \mathbb{Z}^n -by- \mathbb{Z} groups have solvable conjugacy problem.

Theorem (elementary)

The full $GL_n(\mathbb{Z})$ is O.D.

Corollary

Cyclic subgroups of $GL_n(\mathbb{Z})$ are O.D.

Corollary

 \mathbb{Z}^n -by- \mathbb{Z} groups have solvable conjugacy problem.

Theorem (elementary)

The full $GL_n(\mathbb{Z})$ is O.D.

Corollary

Finite index subgroups of $GL_n(\mathbb{Z})$ are O.D.

Corollary

If $\langle M_1, \ldots, M_m \rangle$ is of finite index in $GL_n(\mathbb{Z})$ then $\mathbb{Z}^n \rtimes_{M_1, \ldots, M_m} F_m$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Corollary

Finite index subgroups of $GL_n(\mathbb{Z})$ are O.D.

Corollary

If $\langle M_1, \ldots, M_m \rangle$ is of finite index in $GL_n(\mathbb{Z})$ then $\mathbb{Z}^n \rtimes_{M_1, \ldots, M_m} F_m$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Corollary

Finite index subgroups of $GL_n(\mathbb{Z})$ are O.D.

Corollary

If $\langle M_1, \ldots, M_m \rangle$ is of finite index in $GL_n(\mathbb{Z})$ then $\mathbb{Z}^n \rtimes_{M_1, \ldots, M_m} F_m$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Corollary

Finite index subgroups of $GL_n(\mathbb{Z})$ are O.D.

Corollary

If $\langle M_1, \ldots, M_m \rangle$ is of finite index in $GL_n(\mathbb{Z})$ then $\mathbb{Z}^n \rtimes_{M_1, \ldots, M_m} F_m$ has solvable conjugacy problem.

Theorem (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Corollary

Theorem (Bogopolski-Martino-V., 2008)

There are exist 14 matrices $M_1, \ldots, M_{14} \in GL_n(\mathbb{Z})$, for $n \geqslant 4$, such that $\langle M_1, \ldots, M_{14} \rangle \leqslant GL_n(\mathbb{Z})$ is orbit undecidable.

Corollary

There exists a \mathbb{Z}^4 -by- F_{14} group with unsolvable conjugacy problem.

Question

Does $GL_3(\mathbb{Z})$ contain orbit undecidable subgroups ?

Question

Theorem (Bogopolski-Martino-V., 2008)

There are exist 14 matrices $M_1, \ldots, M_{14} \in GL_n(\mathbb{Z})$, for $n \geqslant 4$, such that $\langle M_1, \ldots, M_{14} \rangle \leqslant GL_n(\mathbb{Z})$ is orbit undecidable.

Corollary

There exists a \mathbb{Z}^4 -by- F_{14} group with unsolvable conjugacy problem.

Question

Does $GL_3(\mathbb{Z})$ contain orbit undecidable subgroups ?

Question

Theorem (Bogopolski-Martino-V., 2008)

There are exist 14 matrices $M_1, \ldots, M_{14} \in GL_n(\mathbb{Z})$, for $n \geqslant 4$, such that $\langle M_1, \ldots, M_{14} \rangle \leqslant GL_n(\mathbb{Z})$ is orbit undecidable.

Corollary

There exists a \mathbb{Z}^4 -by- F_{14} group with unsolvable conjugacy problem.

Question

Does $GL_3(\mathbb{Z})$ contain orbit undecidable subgroups ?

Question

Theorem (Bogopolski-Martino-V., 2008)

There are exist 14 matrices $M_1, \ldots, M_{14} \in GL_n(\mathbb{Z})$, for $n \geqslant 4$, such that $\langle M_1, \ldots, M_{14} \rangle \leqslant GL_n(\mathbb{Z})$ is orbit undecidable.

Corollary

There exists a \mathbb{Z}^4 -by- F_{14} group with unsolvable conjugacy problem.

Question

Does $GL_3(\mathbb{Z})$ contain orbit undecidable subgroups?

Question

Theorem (Bogopolski-Martino-V., 2008)

There are exist 14 matrices $M_1, \ldots, M_{14} \in GL_n(\mathbb{Z})$, for $n \geqslant 4$, such that $\langle M_1, \ldots, M_{14} \rangle \leqslant GL_n(\mathbb{Z})$ is orbit undecidable.

Corollary

There exists a \mathbb{Z}^4 -by- F_{14} group with unsolvable conjugacy problem.

Question

Does $GL_3(\mathbb{Z})$ contain orbit undecidable subgroups?

Question

THANKS