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Notation

A = {a1, . . . , an} is a finite alphabet (n letters).
A±1 = A ∪ A−1 = {a1, a−1

1 , . . . , an, a−1
n }.

Fn is the free group on A.
Aut (Fn) ⊆ End (Fn).
I let endomorphisms ϕ : Fn → Fn act on the right, x 7→ xϕ.

So, compositions are αβ : Fn
α→ Fn

β→ Fn, x 7→ xα 7→ xαβ.
conjugations: γu : Fn → Fn, x 7→ u−1xu.
Fix (φ) = {x ∈ Fn | xφ = x} 6 Fn.
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Definition
Two elements u, v ∈ G are said to be conjugated, denoted u ∼ v, if
v = g−1ug for some g ∈ G.

Definition

The conjugacy problem for G, denoted CP(G): “Given u, v ∈ G
decide whether u ∼ v".

Definition

For ϕ ∈ Aut (G), two elements u, v ∈ G are said to be ϕ-twisted
conjugated, denoted u ∼ϕ v, if v = (gϕ)−1ug for some g ∈ G.

Definition

The twisted conjugacy problem for G, denoted TCP(G): “Given
ϕ ∈ Aut (G) and u, v ∈ G decide whether u ∼ϕ v".
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Not much is known about twisted conjugacy problem:

Theorem
Every finitely generated, virtually

(i) abelian, or
(ii) free, or
(iii) surface, or
(iv) polycyclic
group has solvable twisted conjugacy problem.

Theorem (work in progress)

(w. J.Burillo & F.Matucci) Thomson’s group has solvable TCP,
(w. J.González-Meneses) Braid group has solvable TCP,
(with V. Romankov) Nilpotent and metabelian groups have
solvable TCP.
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Theorem (Bogopolski-Martino-Maslakova-V., 2005)

Let G be a group (given as a finite presentation) and K 6 G a finite
index subgroup (given by generators). Then,

if K is characteristic and TCP(K ) is solvable, then TCP(G) is
solvable,
if K is normal and TCP(K ) is solvable, then CP(G) is solvable.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

There exists a group G with CP(G) solvable but TCP(G) unsolvable.
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Definition

Two automorphisms α, β ∈ Aut (G) are isogradient, denoted α ≈ β, if
they are conjugated by a conjugation, i.e. ∃ g ∈ G such that

G
γg→ G

α ↓ ≡ ↓ β

G
γg→ G

Observation
If G has trivial center, then

u ∼ϕ v ⇔ ϕγu ≈ ϕγv ⇔ ∃g ∈ G s.t . ϕγu

G
γg→ G

↓ ≡ ↓
G

γg→ G
ϕγv .
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Theorem (Bogopolski-Martino-Maslakova-V., 2005)

TCP(Fn) is solvable.

Proof.
ϕγu ≈ ϕγv =⇒ (Fix ϕγu)γg = Fix ϕγv .
The convers is not true in general, but...

In the diagram ϕγu

Fn
γg→ Fn

↓ ↓
Fn

γg→ Fn

ϕγv ,

a) x(ϕγu)γg = xγg(ϕγv ) ⇐⇒ xϕ ∈ C(v−1(gϕ)−1ug);
b) {x ∈ Fn | x(ϕγu)γg = xγg(ϕγv )} is either cyclic, or the whole Fn.

So, ϕγu ≈ ϕγv ⇐= (Fix ϕγu)γg = Fix ϕγv plus rank > 2.
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Idea is to force the diagram to commute.

Extend to Fn ∗ 〈z〉 and ϕ̂ : Fn ∗ 〈z〉 → Fn ∗ 〈z〉, sending z to uzu−1.

Now, if zγg ∈ Fix (ϕ̂γv ) ⇒ z commutes in the diagram
⇒ z ∈ C(v−1(gϕ)−1ug)
⇒ v−1(gϕ)−1ug = 1
⇒ u ∼ϕ v

.

Hence, u ∼ϕ v ⇐⇒ zγg ∈ Fix (ϕ̂γv ) for some g ∈ Fn.
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Idea is to force the diagram to commute.

Extend to Fn ∗ 〈z〉 and ϕ̂ : Fn ∗ 〈z〉 → Fn ∗ 〈z〉, sending z to uzu−1.

Now, if zγg ∈ Fix (ϕ̂γv ) ⇒ z commutes in the diagram
⇒ z ∈ C(v−1(gϕ)−1ug)
⇒ v−1(gϕ)−1ug = 1
⇒ u ∼ϕ v

.
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Algorithm is the following: given ϕ ∈ Aut (Fn) and u, v ∈ Fn:

1- Extend ϕ to ϕ̂ : Fn ∗ 〈z〉 → Fn ∗ 〈z〉, sending z to uzu−1.

2- Compute a basis for Fix (ϕ̂γv ) using

Theorem (Maslakova)

Fixed subgroups of automorphisms of free groups are computable.

3- Check whether Fix (ϕ̂γv ) contains zγg for some g ∈ Fn, using
Stallings’ automata. �
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Definition

Let Fn = 〈x1, . . . , xn | 〉 be a free group on {x1, . . . , xn} (n ≥ 2), and let
ϕ ∈ Aut (Fn). The free-by-cyclic group Fn oϕ Z is defined as

Fn oϕ Z = 〈x1, . . . , xn, t | t−1xi t = xiϕ〉
= 〈x1, . . . , xn, t | xi t = t(xiϕ)〉.

Move t ’s to left & get usual normal forms, t r w , with r ∈ Z, w ∈ Fn.

Example

Consider F3 = 〈a, b, c | 〉 and ϕ : F3 → F3 given by a 7→ a, b 7→ ba,
c 7→ b−2cba. In F3 oϕ Z we have

tbt2a−2t−1cta−1b−1 = tbt2a−2t−1tb−2cbaa−1b−1

= tbt2a−2b−2c
= tt2ba2a−2b−2c
= t3(b−1c).
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Theorem (Bogopolski-Martino-Maslakova-V., 2005)

For every ϕ ∈ Aut (Fn), CP(Fn oϕ Z) is solvable.

Proof. Let t r u, tsv , tk g be arbitrary elements in Mϕ = Fn oϕ Z.
(g−1t−k )(t r u)(tk g) = g−1t r (uϕk )g = t r (gϕr )−1(uϕk )g.

t r u and tsv
conj. in Mϕ

⇐⇒ r = s
v ∼ϕr (uϕk ) for some k ∈ Z.

I Case 1: r 6= 0
To reduce to finitely many k ’s, note that u ∼ϕ uϕ (because
u = (uϕ)−1(uϕ)u ), so uϕk ∼ϕr uϕk±λr ; hence,

t r u and tsv
conj. in Mϕ

⇐⇒ r = s
v ∼ϕr (uϕk ) for some k = 0, . . . , r − 1.

Thus, CP(Mϕ) reduces to finitely many checks of TCP(Fn).
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I Case 2: r = 0
Still infinitely many k ’s:

u and v
conj. in Mϕ

⇐⇒ v ∼ uϕk for some k ∈ Z.

This is precisely Brinkmann’s result:

Theorem (Brinkmann, 2006)

Given φ : Fn → Fn and u, v ∈ Fn, it is decidable whether
v ∼ uφk for some k ∈ Z.

Hence, CP(Mϕ) is solvable. �
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Theorem (Bogopolski-Martino-V., 2008)

Let
1 −→ F α−→ G β−→ H −→ 1

be an algorithmic short exact sequence of groups such that
(i) TCP(F ) is solvable,
(ii) CP(H) is solvable, and
(iii) there is an algorithm which, given an input 1 6= h ∈ H, computes

a finite set of elements zh,1, . . . , zh,th ∈ H such that

CH(h) = 〈h〉zh,1 t · · · t 〈h〉zh,th .

Then,

CP(G) is solvable ⇐⇒
AG =

{
γg : F → F

x 7→ g−1xg

∣∣∣∣ g ∈ G
}

6 Aut(F ) is orbit decidable.
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Definition

A subgroup A 6 Aut (F ) is said to be orbit decidable (O.D.) if ∃ an
algorithm s.t., given u, v ∈ F decides whether v ∼ uα for some α ∈ A.

Previous result in this language:

Theorem (Brinkmann, 2006)

Cyclic subgroups of Aut (Fn) are O.D.

Corollary (Bogopolski-Martino-Maslakova-V., 2005)

Free-by-cyclic groups have solvable conjugacy problem.
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〈ϕ1, . . . , ϕ14〉 6 Aut (F3) is orbit undecidable.
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Definition

Let Zn = 〈x1, . . . , xn | [xi , xj ]〉 be the free abelian group of rank n ≥ 2,
and let M1, . . . , Mm ∈ Aut (Zn) = GLn(Z). The (free abelian)-by-free
group Zn oM1,...,Mm Fm is defined as

Fn oM1,...,Mm Fm = 〈x1, . . . , xn, t1, . . . , tm | t−1
j xi tj = xiMj , [xi , xj ] = 1〉.

And this sequence, again, satisfies (i), (ii) and (iii):

1 −→ Zn −→ Zn oM1,...,Mm Fm −→ Fm −→ 1

So,

CP(Zn oM1,...,Mm Fm) is solvable ⇔ 〈M1, . . . , Mm〉 6 GLn(Z) is O.D.
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The full GLn(Z) is O.D.

Corollary

If 〈M1, . . . , Mm〉 = GLn(Z) then Zn oM1,...,Mm Fm has solvable
conjugacy problem.
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There are exist 14 matrices M1, . . . , M14 ∈ GLn(Z), for n > 4, such
that 〈M1, . . . , M14〉 6 GLn(Z) is orbit undecidable.

Corollary

There exists a Z4-by-F14 group with unsolvable conjugacy problem.

Question

Does GL3(Z) contain orbit undecidable subgroups ?

Question

Does there exist Z3-by-free groups with unsolvable conjugacy
problem ?
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