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Definitions and notation

A = {a1, . . . , an} is a finite alphabet (n letters).
A±1 = A ∪ A−1 = {a1, a−1

1 , . . . , an, a−1
n }.

Usually, A = {a, b, c}.
(A±1)∗ the free monoid on A±1 (words on A±1).
FA = (A±1)∗/ ∼ is the free group on A (words on A±1 modulo reduction).
Every w ∈ A∗ has a unique reduced form,
1 denotes the empty word, and | · | the (shortest) length in FA:
|1| = 0, |aba−1| = |abbb−1a−1| = 3, |uv | 6 |u|+ |v |.
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Motivation

In basic linear algebra:

U 6 V 6 K n ⇒ V = U ⊕ L.

In Zn, the analog is almost true:

U 6 V 6 Zn ⇒ ∃ U ≤fi U ′ 6 V s.t. V = U ′ ⊕ L.

In FA, the analog is ...

far from true because H 6 K 6⇒ r(H) 6 r(K ) ...
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Motivation

In basic linear algebra:

U 6 V 6 K n ⇒ V = U ⊕ L.

In Zn, the analog is almost true:

U 6 V 6 Zn ⇒ ∃ U ≤fi U ′ 6 V s.t. V = U ′ ⊕ L.

In FA, the analog is ...

almost true again, ... in the sense of Takahasi.
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Algebraic and transcendental elements

Mimicking field theory...

Definition
Let H 6 FA and w ∈ FA. We say that w is

algebraic over H if ∃ 1 6= eH(x) ∈ H ∗ 〈x〉 such that eH(w) = 1;
transcendental over H otherwise.

Observation
w is transcendental over H ⇐⇒ 〈H, w〉 ' H ∗ 〈w〉

⇐⇒ H is contained in a proper f.f. of 〈H, w〉.

Problem
w1, w2 algebraic over H 6⇒ w1w2 algebraic over H.

H = 〈a, bab, cac〉 6 〈a, b, c〉, and w1 = b, w2 = c

Enric Ventura (UPC) Algebraic extensions in free groups Sunday, Nov. 29, 2009 7 / 53



Algebraic and transcendental elements

Mimicking field theory...

Definition
Let H 6 FA and w ∈ FA. We say that w is

algebraic over H if ∃ 1 6= eH(x) ∈ H ∗ 〈x〉 such that eH(w) = 1;
transcendental over H otherwise.

Observation
w is transcendental over H ⇐⇒ 〈H, w〉 ' H ∗ 〈w〉

⇐⇒ H is contained in a proper f.f. of 〈H, w〉.

Problem
w1, w2 algebraic over H 6⇒ w1w2 algebraic over H.

H = 〈a, bab, cac〉 6 〈a, b, c〉, and w1 = b, w2 = c

Enric Ventura (UPC) Algebraic extensions in free groups Sunday, Nov. 29, 2009 7 / 53



Algebraic and transcendental elements

Mimicking field theory...

Definition
Let H 6 FA and w ∈ FA. We say that w is

algebraic over H if ∃ 1 6= eH(x) ∈ H ∗ 〈x〉 such that eH(w) = 1;
transcendental over H otherwise.

Observation
w is transcendental over H ⇐⇒ 〈H, w〉 ' H ∗ 〈w〉

⇐⇒ H is contained in a proper f.f. of 〈H, w〉.

Problem
w1, w2 algebraic over H 6⇒ w1w2 algebraic over H.

H = 〈a, bab, cac〉 6 〈a, b, c〉, and w1 = b, w2 = c

Enric Ventura (UPC) Algebraic extensions in free groups Sunday, Nov. 29, 2009 7 / 53



Algebraic and transcendental elements

Mimicking field theory...

Definition
Let H 6 FA and w ∈ FA. We say that w is

algebraic over H if ∃ 1 6= eH(x) ∈ H ∗ 〈x〉 such that eH(w) = 1;
transcendental over H otherwise.

Observation
w is transcendental over H ⇐⇒ 〈H, w〉 ' H ∗ 〈w〉

⇐⇒ H is contained in a proper f.f. of 〈H, w〉.

Problem
w1, w2 algebraic over H 6⇒ w1w2 algebraic over H.

H = 〈a, bab, cac〉 6 〈a, b, c〉, and w1 = b, w2 = c

Enric Ventura (UPC) Algebraic extensions in free groups Sunday, Nov. 29, 2009 7 / 53



Algebraic and transcendental elements

Mimicking field theory...

Definition
Let H 6 FA and w ∈ FA. We say that w is

algebraic over H if ∃ 1 6= eH(x) ∈ H ∗ 〈x〉 such that eH(w) = 1;
transcendental over H otherwise.

Observation
w is transcendental over H ⇐⇒ 〈H, w〉 ' H ∗ 〈w〉

⇐⇒ H is contained in a proper f.f. of 〈H, w〉.

Problem
w1, w2 algebraic over H 6⇒ w1w2 algebraic over H.

H = 〈a, bab, cac〉 6 〈a, b, c〉, and w1 = b, w2 = c

Enric Ventura (UPC) Algebraic extensions in free groups Sunday, Nov. 29, 2009 7 / 53



Algebraic and transcendental elements

Mimicking field theory...

Definition
Let H 6 FA and w ∈ FA. We say that w is

algebraic over H if ∃ 1 6= eH(x) ∈ H ∗ 〈x〉 such that eH(w) = 1;
transcendental over H otherwise.

Observation
w is transcendental over H ⇐⇒ 〈H, w〉 ' H ∗ 〈w〉

⇐⇒ H is contained in a proper f.f. of 〈H, w〉.

Problem
w1, w2 algebraic over H 6⇒ w1w2 algebraic over H.

H = 〈a, bab, cac〉 6 〈a, b, c〉, and w1 = b, w2 = c

Enric Ventura (UPC) Algebraic extensions in free groups Sunday, Nov. 29, 2009 7 / 53



Algebraic and free extensions

A relative notion works better...

Definition
Let H 6 K 6 FA and w ∈ K . We say that w is

K -algebraic over H if ∀ free factorization K = K1 ∗ K2 with H 6 K1, we
have w ∈ K1;
K -transcendental over H otherwise.

Observation
w is algebraic over H if and only if it is 〈H, w〉-algebraic over H.

Observation
If w1 and w2 are K -algebraic over H, then so is w1w2.
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Algebraic and free extensions

Definition
Let H 6 K 6 FA.
We say that H 6 K is an algebraic extension, denoted H ≤alg K ,
⇐⇒ every w ∈ K is K -algebraic over H,
⇐⇒ H is not contained in any proper free factor of K ,
⇐⇒ H 6 K1 6 K1 ∗ K2 = K implies K2 = 1.

We say that H 6 K is a free extension, denoted H ≤ff K ,
⇐⇒ every w ∈ K \ H is K -transcendental over H,
⇐⇒ H 6 H ∗ L = K for some L.
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Algebraic and free extensions

〈a〉 6ff 〈a, b〉 6ff 〈a, b, c〉, and 〈x r 〉 6alg 〈x〉, ∀x ∈ FA ∀r ∈ Z \ {0}.
if r(H) > 2 and r(K ) 6 2 then H 6alg K .
H 6alg K 6alg L implies H 6alg L.
H 6ff K 6ff L implies H 6ff L.
H 6alg L and H 6 K 6 L imply K 6alg L but not necessarily H 6alg K .
H 6ff L and H 6 K 6 L imply H 6ff K but not necessarily K 6ff L.

How many algebraic extensions does a given H have in FA ?

Can we compute them all ?
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Takahasi’s Theorem

Theorem (Takahasi, 1951)
For every H 6fg FA, the set of algebraic extensions, denoted AE(H), is finite.

Original proof by Takahasi was combinatorial and technical,

Modern proof, using Stallings automata, is much simpler, and due
independently to Ventura (1997), Margolis-Sapir-Weil (2001) and
Kapovich-Miasnikov (2002).

Additionally, AE(H) is computable.
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Stallings automata

Definition
A Stallings automaton is a finite A-labeled oriented graph with a distinguished
vertex, (X , v), such that:

1- X is connected,
2- no vertex of degree 1 except possibly v (X is a core-graph),
3- no two edges with the same label go out of (or in to) the same vertex.

NO : •

a

��

b

����
��
��
��
��
��
�

• c // •
a

** •

b

XX0000000000000

c

jj

YES : •

a

��

b

����
��
��
��
��
��
�

•
a

** •

b

XX0000000000000

c

jj
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Stallings automata

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983),
551-565,

Stallings (building on previous works) gave a bijection between finitely
generated subgroups of FA and Stallings automata:

{f.g. subgroups of FA} ←→ {Stallings automata},

which is crucial for the modern understanding of the lattice of subgroups of FA.
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Reading the subgroup from the automata

Definition
To any given (Stallings) automaton (X , v), we associate its fundamental
group:

π(X , v) = { labels of closed paths at v} 6 FA,

clearly, a subgroup of FA.

•

a

��

X= b

����
��
��
��
��
��
�

•
a

** •

b

XX0000000000000

c

jj

π(X , •) = {1, a, a−1, bab, bc−1b,
babab−1cb−1, . . .}

π(X , •) 63 bc−1bcaa

Membership problem in π(X , •) is solvable.
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A basis for π(X , v)

Proposition
For every Stallings automaton (X , v), the group π(X , v) is free of rank
rk(π(X , v)) = 1− |VX |+ |EX |.

Proof:
Take a maximal tree T in X .
Write T [p, q] for the geodesic (i.e. the unique reduced path) in T from p
to q.
For every e ∈ EX − ET , xe = label(T [v , ιe] · e · T [τe, v ]) belongs to
π(X , v).
Not difficult to see that {xe | e ∈ EX − ET} is a basis for π(X , v).
And, |EX − ET | = |EX | − |ET |

= |EX | − (|VT | − 1) = 1− |VX |+ |EX |. �
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Example

•

a

��

b
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�
�
�
�
�
�

•
a

** •

b

XX0
0
0
0
0
0
0

c

jj

H = 〈 〉
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b
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H = 〈a, bab, b−1cb−1〉
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Example

•

a
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b
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�
�
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�

•
a

** •

b

XX0
0
0
0
0
0
0

c

jj

H = 〈a, bab, b−1cb−1〉
rk(H) = 1− 3 + 5 = 3.
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Example-2

· · · b // • b //

a

��
• b //

a

��
• b //

a

��
• b //

a

��
• b //

a

��
• b //

a

��
• b //

a

��
· · ·

Fℵ0 ' H = 〈. . . , b−2ab2, b−1ab, a, bab−1, b2ab−2, . . .〉 6 F2.
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Constructing the automata from the subgroup

In any automaton containing the following situation, for x ∈ A±1,

• x //

x
&&NNNNNNNNNNNNN u

v

we can fold and identify vertices u and v to obtain

• x // u = v .

This operation, (X , v) (X ′, v), is called a Stallings folding.
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Constructing the automata from the subgroup

Lemma (Stallings)
If (X , v) (X ′, v ′) is a Stallings folding then π(X , v) = π(X ′, v ′).

Given a f.g. subgroup H = 〈w1, . . . , wm〉 6 FA (we assume wi are reduced
words), do the following:

1- Draw the flower automaton,
2- Perform successive foldings until obtaining a Stallings automaton,

denoted Γ(H).
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Example: H = 〈baba−1, aba−1, aba2〉

• a // •

b

��
• a // •

b

OO

a //

a

��?
??

??
??

??
??

??
??

?

a

��

a

����
��

��
��

��
��

��
��

•

•

a

??����������������
•

b
oo • •

b
oo

Flower(H)
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Example: H = 〈baba−1, aba−1, aba2〉
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Example: H = 〈baba−1, aba−1, aba2〉
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Example: H = 〈baba−1, aba−1, aba2〉

• a //
b

.. •

a

����
��

��
��

��
��

��
��

b
pp

•

a

OO

Folding #3. Γ(H)

By Stallings Lemma, π(Γ(H), •) = 〈baba−1, aba−1, aba2〉
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Example: H = 〈baba−1, aba−1, aba2〉

• a //
b

.. •

a

����
��

��
��

��
��

��
��

b
pp

•

a

OO

Folding #3. Γ(H)

By Stallings Lemma, π(Γ(H), •) = 〈baba−1, aba−1, aba2〉
= 〈b, aba−1, a3〉
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Local confluence

It can be shown that

Proposition
The automaton Γ(H) does not depend on the sequence of foldings

Proposition
The automaton Γ(H) does not depend on the generators of H.

Theorem
The following is a bijection:

{f.g. subgroups of FA} ←→ {Stallings automata}
H → Γ(H)

π(X , v) ← (X , v)
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Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)
Every subgroup of FA is free.

Finite automata work for the finitely generated case, but everything
extends easily to the general case (using infinite graphs).

The original proof (1920’s) is combinatorial and much more technical.
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Takahasi’s theorem

Definition
Let H 6 K 6 FA. Then, H 6 K is algebraic if and only if H is not contained in
any proper free factor of K .

Theorem (Takahasi, 1951)
For every H 6fg FA, the set of algebraic extensions, AE(H), is finite.

Proof (Ventura; Margolis-Sapir-Weil; Kapovich-Miasnikov):
Consider Γ̃(H), the result of attaching all possible (infinite) “hairs" to Γ(H)
(i.e. the covering of the bouquet corresponding to H).
Given H 6 K (both f.g.), we can obtain Γ̃(K ) from Γ̃(H) by performing the
appropriate identifications of vertices (plus subsequent foldings).
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Takahasi’s theorem

Hence, if H 6 K (both f.g.) then Γ(K ) contains as a subgraph either Γ(H)
or some quotient of it (i.e. Γ(H) after some identifications of vertices,
Γ(H)/ ∼).
The overgroups of H:
O(H) = {π(Γ(H)/ ∼, •) | ∼ is a partition of VΓ(H)}.
Hence, for every H 6 K , there exists L ∈ O(H) such that H 6 L 6ff K .
Thus, AE(H) ⊆ O(H) and so, it is finite. �
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In basic linear algebra:

U 6 V 6 K n ⇒ V = U ⊕ L.

In Zn, the analog is almost true:

U 6 V 6 Zn ⇒ ∃ U ≤fi U ′ 6 V s.t. V = U ′ ⊕ L.

In FA, the following analog is true:

H 6 K 6 FA ⇒ ∃ H ≤alg Hi 6 K s.t. K = Hi ∗ L.
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Computing AE(H)

Corollary
AE(H) is computable.

Proof:
Compute Γ(H),
Compute Γ(H)/ ∼ for all partitions ∼ of VΓ(H),
Compute O(H),
Clean O(H) by detecting all pairs K1, K2 ∈ O(H) such that K1 6ff K2 and
deleting K2.
The resulting set is AE(H). �

For the cleaning step we need:
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Deciding free-factorness

Proposition
Given H, K 6 FA, it is algorithmically decidable whether H 6ff K or not.

Proved by:
Whitehead 1930’s (classical and exponential),
Silva-Weil 2006 (graphical algorithm, faster but still exponential),
Roig-Ventura-Weil 2007 (variation of Whitehead algorithm in polynomial
time).
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The algebraic closure

Observation
If H 6alg K1 and H 6alg K2 then H 6alg 〈K1 ∪ K2〉.

Corollary
For every H 6 K 6 FA (all f.g.), AEK (H) has a unique maximal element, called
the K -algebraic closure of H, and denoted ClK (H).

Corollary
Every extension H 6 K of f.g. subgroups of FA splits, in a unique way, in an
algebraic part and a free part, H 6alg ClK (H) 6ff K .
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Pseudo-varieties of finite groups

Definition
A pseudo-variety of groups V is a class of finite groups closed under taking
subgroups, quotients and finite direct products.

G = all finite groups,
Gp = all finite p-groups,
Gnil = all finite nilpotent groups,
Gsol = all finite soluble groups,
Gab = all finite abelian groups,
for a finite group V , [V ] = all quotients of subgroups of V k , k > 1.
· · ·

Definition
V is extension-closed if V CW with V , W/V ∈ V imply W ∈ V.
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The pro-V topology in G

Definition
Let G be a group, and V be a pseudo-variety of finite groups. The pro-V
topology on G can be defined in several equivalent ways:

it is the smallest topology making all the morphisms from G into all V ∈ V
(with the discrete topology) continuous,
a basis of open sets is given by ϕ−1(x), for all morphism ϕ : G→ V ∈ V,
the normal (finite index) subgroups K EG such that G/K ∈ V form a
basis of neighborhoods of 1,
it is the topology given by the pseudo-ultra-metric d(x , y) = 2−r(x,y),
where r(x , y) = min{|V | | V ∈ V and separates x and y }.

Observation
This topology is Hausdorf⇐⇒ d is an ultra-metric⇐⇒ G is residually-V.
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V-closures in FA

Proposition (Ribes, Zaleskiı̆)
Let V be an extension-closed pseudo-variety, and consider FA the free group
on A with the pro-V topology. Then, for H ≤ff K 6 FA, both f.g.,

K V − closed =⇒ H V − closed.

Corollary
For an extension-closed V and a H ≤fg FA, we have H ≤alg clV(H).

Furthermore,

Proposition (Ribes, Zaleskiı̆)
In this situation, r(clV(H)) 6 r(H).
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Computing V-closures

Proposition (Margolis-Sapir-Weil)
The p-closure of H ≤fg FA is effectively computable, for all primes p.

Proposition (Margolis-Sapir-Weil)
The nil-closure of H ≤fg FA is the intersection, over all primes, of the p-closure
of H. Hence, it is effectively computable.

Problem
Is the sol-closure of H ≤fg FA effectively computable ?
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The four families

Definition
A subgroup H 6 FA is said to be

1-auto-fixed if H = Fix (φ) for some φ ∈ Aut (FA),
1-endo-fixed if H = Fix (φ) for some φ ∈ End (FA),
auto-fixed if H = Fix (S) = ∩φ∈SFix (φ) for some S ⊆ Aut (FA),
endo-fixed if H = Fix (S) = ∩φ∈SFix (φ) for some S ⊆ End (FA),

Easy to see that 1-mono-fixed = 1-auto-fixed.
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Relations between them

1− auto − fixed ⊆ 1− endo − fixed

∩| ∩|

auto − fixed ⊆ endo − fixed
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Relations between them

1− auto − fixed
⊆
6= 1− endo − fixed

∩| ∩|

auto − fixed
⊆
6= endo − fixed

Example (Martino-V., 03; Ciobanu-Dicks, 06)
Let F3 = 〈a, b, c〉 and H = 〈b, cacbab−1c−1〉 6 F3. Then,
H = Fix (a 7→ 1, b 7→ b, c 7→ cacbab−1c−1), but H is NOT the fixed subgroup
of any set of automorphism of F3.
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Relations between them

1− auto − fixed
⊆
6= 1− endo − fixed

∩| ‖ ? ∩| ‖ ?

auto − fixed
⊆
6= endo − fixed

Problem
Vertical inclusions are equalities ?
In other words,
Are the families of 1-auto-fixed and 1-endo-fixed subgroups of FA closed
under intersection ?
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Yes, up to free complements

Theorem (Martino-V., 00)
Let S ⊆ End (FA). Then, ∃φ ∈ 〈S〉 such that Fix (S) ≤ff Fix (φ).

Sketch. One can reduce the problem to
S ⊆ Aut (FA),
|S| = 2, say S = {α, β},
Per (β) = Fix (β).

Now, take H = Fix (α) ∩ Fix (β) and we’ll see H ≤ff Fix (αβn) for some n:

Clearly, H 6 Fix (αβn), for every n.
∀n, ∃Hn ∈ AE(H) such that H 6 Hn ≤ff Fix (αβn).
Take n < m with Hn = Hm (recall that AE(H) is finite).

Fix (α)∩Fix (β) = H 6 Hn∩Hm 6 Fix (αβn)∩Fix ((αβm)) 6 Fix (α)∩Fix (β).

Hence, all are equalities, Hn = H, and H ≤ff Fix (αβn). �
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