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Abstract

Let F be a finitely generated free group, and K 6 F be a finitely
generated, infinite index subgroup of F . We show that generically
many finitely generated subgroups H 6 F have trivial intersection
with all conjugates of K, thus proving a stronger, generic form of
the Hanna Neumann Conjecture. As an application, we show that the
equalizer of two free group homomorphisms is generically trivial, which
implies that the Post Correspondence Problem is generically solvable
in free groups.
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1 Introduction

Let F be a free group, and H and K finitely generated subgroups of F . A
classical result of Howson (1954) shows that the intersection of H and K
is finitely generated, see [6]. In 1956, Hanna Neumann [11] formulated the
following question which is still open, and known as the Hanna Neumann
conjecture:

r̃(H ∩ K) 6 r̃(h)r̃(K),

where the reduced rank of a free group H of rank rk(H) is defined as r̃(H) =
max{r(H) − 1, 0}.

Then, in 1990, W. Neumann [12] formulated a stronger version of the
question as follows. For H and K as above let H\F/K = {HxK | x ∈ F} be
the set of double cosets, and for x ∈ F let Hx = x−1Hx. If HxK = HyK
it follows that r̃(Hx ∩ K) = r̃(Hy ∩ K). Then the Strengthened Hanna
Neumann Conjecture consists of the inequality

∑

HgK∈H\F/K

r̃(Hg ∩ K) 6 r̃(H)r̃(K).

In 1992, G. Tardos [15] proved this strong version of the conjecture when one
of the involved subgroups has rank two. In 1994, W. Dicks [2] translated
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the problem into a graph-theoretic conjecture, and in 1996 G.Tardos [16]
resolved the inequality when both subgroups have rank three. W. Dicks and
E. Formanek [3] improved Tardos’ result proving the inequality when one of
the subgroups has rank three.

In the present paper we prove that, for every finitely generated, infinite
index subgroup K 6 F , generically many subgroups H 6 F (that is, “most”
subgroups of F in a certain precise sense) satisfy the following identity:

∑

g∈F

r(Hg ∩ K) = 0, (1)

which clearly implies (a stronger form of) the Strengthened Hanna Neumann
Conjecture in a generic version. The notion of genericity will be made precise
in the following section.

We would like to mention the results of [10] and [8], which state that
for any positively generated subgroup H the Strengthened Hanna Neumann
Conjecture holds for any K. However, for a subgroup H, the property of
being positively generated is not a generic property.

After the completion of this work, we have become aware of the re-
sult [1] of G. Arzhantseva, which also imply the genericity of the Strength-
ened Hanna Neumann Conjecture, although this implication is not stated in
her paper. More specifically, if K is a finitely generated subgroup of infinite
index in F , she proves that generically many tuples of elements of F , say
h1, . . . , hr ∈ F , satisfy that the normal closure ≪ h1, . . . , hr ≫ has trivial
intersection with K. Hence, for a generic finitely generated H 6 F , one can
deduce Hg ∩ K = 1 for all g ∈ F . This implies equation (1) for generically
many subgroups H and K.

In Section 4 we present an application of the main result. We show that
the equalizer of two free group homomorphisms is generically trivial. Let
F1 and F2 be two subgroups of arbitrary finite rank. The equalizer of two
homomorphisms α and β from F1 to F2 is the set of elements (understood
as reduced words) in F1 for which α(x) = β(x). This is closely related to
the Post Correspondence Problem in free groups.

2 Definitions and notation

Let Fk be a free group of rank k > 2 with generating set A = {a1, . . . , ak},
viewed as the fundamental group of the wedge of k circles. This naturally
leads to working with graphs; all graphs considered here are going to be
oriented and finite (unless otherwise stated).

Definition. Let H be a finitely generated subgroup of rank r of the free
group Fk, and let XH be the corresponding covering space of the wedge of
k circles (infinite except when H has finite index in Fk). That is, vertices
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of XH are cosets, V (XH) = {Hx | x ∈ Fk}, and edges are of the form
(Hx, a) going from Hx to Hxa, for all x ∈ Fk and a ∈ A. Note that XH

is an A-labeled oriented graph, with a distinguished basepoint ∗ = H1, and
with every vertex being the initial vertex (and the terminal vertex as well)
of exactly k edges, labeled by the k symbols in A (see [14] for more details).

The core of H, denoted CH , is the smallest subgraph of XH containing
the basepoint ∗, and having fundamental group H. Since H is finitely gen-
erated, CH is a finite graph with all vertices of degree at least two, except
possibly ∗. Like XH , the graph CH is an A-labeled oriented graph, with
every vertex being the initial vertex (and the terminal vertex) of at most k
edges, labeled by pairwise different letters in A. A vertex is saturated if it
is the initial vertex of exactly k edges, as well as the terminal vertex of k
edges too. And it happens that the subgroup H has finite index in Fk if and
only if all vertices of CH are saturated, see [14] for details.

Clearly, every path p in CH spells a word wp on A±1, i.e. an element
wp ∈ Fk, which is reduced if and only if p has no backtracking (here we
understand that crossing backwards an edge labeled a, reads a−1). It is also
clear that p is closed (resp. closed at ∗) if and only if some conjugate of wp

(resp. wp) belongs to H. Dually, we say that a word w is readable in CH

if there exists a path p in CH (with whatever initial and terminal vertices)
such that wp = w. Finally, a segment of a word w is a subword, i.e. a word
w# such that w = w′ · w# · w′′ for some words w′ and w′′, and with no
cancelation in the two products; the segment w# is called an initial segment
(resp. a terminal segment) when w′ (resp. w′′) is trivial. Analogously, we
can talk about segments of paths.

Definition. Let CH and CK be the cores of two subgroups H,K 6 Fk,
respectively. Then we define the pullback of H and K, denoted CH,K , in the
following way: the set of vertices is the cartesian product V (CH) × V (CK)
and, for every a ∈ A, the set of oriented a-labeled edges is the carte-
sian product of the sets of a-labeled edges in CH and CK , where the edge
((Hx, a), (Ky, a)) (simply denoted ((Hx,Ky), a)) starts at vertex (Hx,Ky)
and ends at vertex (Hxa,Kya). It is easy to see that the connected com-
ponent of CH,K containing the basepoint (∗, ∗) = (H,K), after iteratively
removing several possible vertices of degree one, becomes isomorphic to the
core of H ∩ K; in a similar way, the other possible components of CH,K

correspond to intersections of the form H ∩ Kx, see [14] for details.
We say that H and K have trivial pullback when CH,K is a forest (i.e.

all its components are trees). Algebraically, this corresponds to saying that
H ∩ Kx = 1 for every x ∈ Fk.

Definition. The random selection of a finitely generated subgroup H 6 Fk

will consist of choosing a random tuple of words {h1, . . . , hr} in Fk of length
bounded by n, consider the subgroup H = 〈h1, . . . , hr〉, and then let n tend
to infinity. Meanwhile, r is a fixed parameter.
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If P is a property, we say that generically many finitely generated sub-
groups of Fk satisfy P if, for every r > 1, the proportion of r-tuples of words
of length less than or equal n in Fk which generate a subgroup satisfying P
(among all possible r-tuples) tends to 1 when n tends to infinity. Further-
more, we say that this genericity is exponential when the mentioned limit
tends to 1 exponentially fast, for every r.

We shall prove a generic version of (in fact, a stronger form of) the
Strengthened Hanna Neumann Conjecture by showing that, for every given
finitely generated, infinite index subgroup K 6 Fk, and every given r > 1,
generically many finitely generated subgroups H 6 Fk have trivial pullback
with K (i.e. CH,K is a forest). Additionally, this genericity will be proven
to be exponential. To this goal, we shall argue by induction on r.

Let us first set some useful notation. Fix an ambient free group Fk with
k > 2, and a finitely generated subgroup K 6 Fk. For any given positive
integers n, r, we define the following sets of tuples of words in Fk (in the
definitions, H will denote the subgroup 〈h1, . . . , hr〉):

• B(n) = B1(n) = {h ∈ Fk | |h| 6 n},

• Br(n) = {(h1, . . . , hr) | hi ∈ Fk, |hi| 6 n} = B(n)×
r)
· · · ×B(n),

• TPr(K) = {(h1, . . . , hr) | hi ∈ Fk, CH,K is trivial },

• NTPr(K) = {(h1, . . . , hr) | hi ∈ Fk, CH,K is non-trivial },

• FGr = {(h1, . . . , hr) | hi ∈ Fk, r(H) = r},

• NFGr = {(h1, . . . , hr) | hi ∈ Fk, r(H) < r},

• IIr = {(h1, . . . , hr) | hi ∈ Fk, [Fk : H] = ∞}.

• NIIr = {(h1, . . . , hr) | hi ∈ Fk, [Fk : H] < ∞},

We remark that the initials used to denote each of these sets mean “ball”,
“trivial pullback”, “non-trivial pullback”, “free generating”, “non-free gen-
erating”, “infinite index”, and “finite index”, respectively.

Note that the first two sets are finite. An easy computation shows that
|B(n)| = 2k(2k−1)n−2

2k−2 and so, (2k − 1)n 6 |B(n)| 6 2(2k − 1)n. Hence,

|Br(n)| =
(2k(2k−1)n−2

2k−2

)r
. The rest of sets are infinite (except the last one)

and we shall be interested in estimating the cardinal of their intersection
with Br(n) for any given n.

We shall need several results from [9]. In that preprint (see Theorem 2
there) it is shown that, generically, any tuple of bounded length words is
a basis of the subgroup it generates (this result is also proven in [7], in a
different way). In our terminology,
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Proposition 1 ([9]). For every positive integer r, the following limit exists
and equals 0,

lim
n→∞

|NFGr ∩ Br(n)|

|Br(n)|
= 0.

Furthermore, the convergence is exponentially fast.

Among tuples in FGr (they are called viable in [9]), Claim 4 of [9] proves
two assertions that, in our terminology, can be stated in the following way.

Proposition 2 ([9]). For every positive integer r, the following limit exists
and equals 0,

lim
n→∞

|FGr ∩ NIIr ∩ Br(n)|

|Br(n)|
= 0.

Furthermore, the convergence is exponentially fast.

Proposition 3 ([9]). For every positive integer r, there exist constants Mr

and 1 < γr < 2k − 1 depending only on r (and the ambient rank k) such
that, for every infinite index subgroup H 6 Fk of rank r, the total number
of reduced paths in CH and with length n, is at most Mrγ

n
r .

3 Main Result

The main result of this note is the following.

Theorem 1. Let Fk be the free group of rank k, and let K 6 Fk be an
infinite index subgroup of rank s. Generically many subgroups of Fk have
trivial pullback with K i.e., for every positive integer r, the following limit
exists and equals 1,

lim
n→∞

|TPr(K) ∩ Br(n)|

|Br(n)|
= 1.

Furthermore, the convergence is exponentially fast.

Proof. The proof goes by induction on r (including the exponential behav-
ior).

For the case r = 1, let h ∈ NTP1(K)∩B1(n). Write h = h1h2h
−1
1 with h2

cyclically reduced, and denote the lengths by n1 = |h1| and n2 = |h2|. Note
that 2n1+n2 6 n, and that C〈h〉 is a circle labeled h2 with a (possibly empty)
tail labeled h1, from the basepoint ∗ to a vertex in the circle. Consider now
one of the shortest non-trivial, reduced, and closed paths p in C〈h〉,K , which
exist by the hypothesis that this pullback is nontrivial. The path p projects
to a nontrivial, reduced, and closed path both in C〈h〉 and CK so, the first
projection must cross the circle labeled h2. Thus, a subpath of p, and so a
subpath of its projection to CK , reads h2. This means that h2 is readable
in CK and hence, by Proposition 3, it has at most Msγ

n2
s possibilities, for
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some constants Ms and γs < 2k − 1. Thus, separating first the case where
2n1 + n2 6 n/2, we have

|NTP1(K) ∩ B1(n)|

|B1(n)|
6

|B(⌊n/2⌋)| +
∑

n1, n2 > 0

n/2 < 2n1 + n2 6 n

(2k − 1)n1 · Msγ
n2
s

(2k − 1)n
6

2(2k − 1)n/2

(2k − 1)n
+

∑

n1, n2 > 0

n/2 < 2n1 + n2 6 n

Msγ
n2
s

(2k − 1)n1(2k − 1)n2
6

∑

n1 > n/8, n2 > 0

n/2 < 2n1 + n2 6 n

Ms

(2k − 1)n/8
+

∑

n1 > 0, n2 > n/4

n/2 < 2n1 + n2 6 n

Ms

(

γs

2k − 1

)n/4

6

n2Ms

(

( 1

2k − 1

)n/8
+

( γs

2k − 1

)n/4
)

,

which tends to zero exponentially fast, when n → ∞.
Now, for given r > 1, assume that the theorem holds for r and let us

prove it for r + 1. This will require us to find an estimate for |TPr+1(K) ∩
Br+1(n)| when n is big enough, using the fact that |TPr(K)∩Br(n)|/|Br(n)|
is as close to 1 as we wish. Or better, passing to the complements, we shall
see that |NTPr+1(K) ∩ Br+1(n)|/|Br+1(n)| tends to zero when n tends to
infinity, using the same fact for |NTPr(K) ∩ Br(n)|/|Br(n)|.

Let (h1, . . . , hr, hr+1) ∈ NTPr+1(K)∩Br+1(n) and write H = 〈h1, . . . , hr〉
and H ′ = 〈h1, . . . , hr, hr+1〉. Then, one of the following four situations must
hold:

(i) (h1, . . . , hr) ∈ NTPr(K) ∩ Br(n) (and no conditions on hr+1), or

(ii) (h1, . . . , hr) ∈ TPr(K) ∩ NFGr ∩ Br(n) (and no conditions on hr+1),
or

(iii) (h1, . . . , hr) ∈ TPr(K) ∩ FGr ∩ NIIr ∩ Br(n) (and no conditions on
hr+1), or

(iv) (h1, . . . , hr) ∈ TPr(K)∩FGr∩IIr∩Br(n), and either an initial segment
and a terminal segment of hr+1 whose lengths add up at least 1

2 |hr+1|
are both readable in CH , or a segment of hr+1 of length at least 1

2 |hr+1|
is readable in CK (we shall refer to this condition by saying that hr+1

is half readable (h.r.) in (CH , CK)).

In fact, this is obvious except the very last condition on hr+1. Assume that
(h1, . . . , hr) ∈ TPr(K) ∩ FGr ∩ IIr ∩ Br(n); in other words, assume that
the core graphs CH and CK have trivial pullback CH,K , have ranks r and
s respectively, and have at least one vertex each, which is not saturated.
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In this situation, let h′
r+1 be the longest initial segment of hr+1 which is

readable in CH starting at ∗, and let h′′
r+1 be the longest terminal segment

of hr+1 which is readable in CH ending at ∗ (in principle, these segments
can be empty, or can even overlap each other). If |h′

r+1| + |h′′
r+1| >

1
2 |hr+1|

then we are done. Otherwise, hr+1 = h′
r+1 · h

#
r+1 · h

′′
r+1, where there is no

cancelation in either product, and |h#
r+1| >

1
2 |hr+1|. In this case, CH′ looks

exactly like CH with an attached handle labeled h#
r+1. Consider now one of

the shortest non-trivial, reduced, and closed paths p in CH′,K (which exist
by the hypothesis that this pullback is nontrivial). The path p projects
to a nontrivial, reduced, and closed path both in CH′ and CK so, the first
projection must cross the handle labeled h#

r+1 (because we are also assuming
that CH,K is a forest). Thus, a subpath of p, and so a subpath of its

projection to CK , reads h#
r+1. This means that h#

r+1 is readable in CK .

C ′
H

CK

h#
r+1

h#
r+1

h′
r+1 h′′

r+1

p

CH′,K

Figure 1: Nontrivial pullback, case (iv)

Once we have this tetrachotomy, the corresponding estimate follows eas-
ily:

|NTPr+1(K) ∩ Br+1(n)|

|Br+1(n)|
6

|NTPr(K) ∩ Br(n)|

|Br(n)|
·
2(2k − 1)n

|B(n)|
+

+
|TPr(K) ∩ NFGr ∩ Br(n)|

|Br(n)|
·
2(2k − 1)n

|B(n)|
+

+
|TPr(K) ∩ FGr ∩ NIIr ∩ Br(n)|

|Br(n)|
·
2(2k − 1)n

|B(n)|
+
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+
|TPr(K) ∩ FGr ∩ IIr ∩ Br(n)|

|Br(n)|
·
|{w ∈ B(n) | w is h.r. in (CH , CK)}|

|B(n)|
.

The first summand is bounded above by 2|NTPr(K)∩Br(n)|/|Br(n)|, which
tends to zero exponentially fast when n → ∞, by the inductive hypothesis.
The second summand is bounded above by 2|NFGr ∩Br(n)|/|Br(n)|, which
tends to zero exponentially fast by Proposition 1. The third summand
is bounded above by 2|FGr ∩ NIIr ∩ Br(n)|/|Br(n)|, which tends to zero
exponentially fast by Proposition 2. Finally, for the last summand let us
ignore the first factor (it is less than one), let us separate those w’s with
|w| 6 n/2, and let us count how many half readable words w do exist with
|w| > n/2 : either their initial and terminal segments w′ and w′′, have length
adding up n/4 or more; or their middle segment w# has length n/4 or more.
By Proposition 3 (and using here that both H and K are infinite index
subgroups of Fk) the number of w’s that fall into the first and second cases
are, at most,

∑

i, j > 0

n/4 6 i + j 6 n

Mrγ
i
r·|B(|w|−i−j)|·Mrγ

j
r 6

∑

i, j > 0

n/4 6 i + j 6 n

M2
r γi+j

r ·2(2k−1)n−i−j

and
∑

n/46i6n

Msγ
i
s · |B(|w| − i)| 6

∑

n/46i6n

Msγ
i
s · 2(2k − 1)n−i,

respectively. Hence, the last summand in the equation above can be bounded
by

1

(2k − 1)n









2(2k − 1)n/2 +
∑

i, j > 0

n/4 6 i + j 6 n

2M2
r γi+j

r (2k − 1)n−i−j+

+
∑

n/46i6n

2Msγ
i
s(2k − 1)n−i



 6

2

(2k − 1)n/2
+

∑

i, j > 0

n/4 6 i + j 6 n

2M2
r

( γr

2k − 1

)i+j
+

∑

n/46i6n

2Ms

( γs

2k − 1

)i
6

2

(2k − 1)n/2
+ 2M2

r n2
( γr

2k − 1

)n/4
+ 2Msn

( γs

2k − 1

)n/4
,

which again tends to zero, exponentially fast when n → ∞, because both γr

and γs are strictly less than 2k − 1. This completes the proof.
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4 The Post Correspondence Problem

The main result of this paper has applications with respect to the Post Cor-
respondence Problem in free groups. The Post Correspondence Problem is
one of the most famous undecidable problems in theoretical computer sci-
ence, and in a more algebraic language it can be stated as follows: given
two morphisms α and β of a free semigroup, decide whether there are any
elements x in the semigroup such that α(x) = β(x). This problem is un-
solvable for a semigroup with at least 7 generators, solvable for a semigroup
with 2 generators, and it is not known whether it is solvable or not for a
semigroup with 3, 4, 5 or 6 generators [13].

Very little is known about the Post Correspondence Problem in free
groups. The only result in this direction is the following, due to Goldstein
and Turner [?]. Let F1 and F2 be two free groups of finite ranks n and
m, with m,n ≥ 2. The equalizer of two homomorphisms α and β from F1

to F2 is the set of elements (understood as reduced words) in F1 for which
α(x) = β(x). Goldstein and Turner have proved that the equalizer of two
homomorphisms is a finitely generated subgroup in case one of the two maps
is injective. Is it not known whether deciding if the equalizer is trivial or
not is a solvable problem.

However, we have the following corollary to Theorem 1. Genericity in
the result below follows the approach taken in the previous sections of this
paper and refers to choosing tuples of elements of bounded length which
represent the images of the homomorphisms in question. One then lets the
length of the words go to infinity.

Corollary 1. Let F1 and F2 be two free groups of ranks n and m, m,n ≥ 2.
Let α and β be two homomorphisms from F1 to F2. Then the equalizer of α
and β is generically trivial, that is, equal to the identity element of F1.

Proof. Let us suppose that F1 has generators x1, . . . , xn. Let α(xi) = ai

and β(xi) = bi, where ai, bi ∈ F2, for all i ∈ {1, . . . , n}. Suppose that there
exists a reduced word w ∈ F1 such that α(w) = β(w) = v. Since α(w) ∈
〈a1, . . . , an〉, and β(w) ∈ 〈b1, . . . , bn〉, we get that v is in the intersection of
the subgroups H = 〈a1, . . . , an〉 and K = 〈b1, . . . , bn〉.

By the main result of this paper, the intersection of the subgroups H
and K is generically trivial (since subgroups of finite index form a negligible
set, the index does not play a role), thus the word v is with probability 1
going to be the identity element in F2. In order to prove that the equalizer is
indeed trivial we need to prove that the kernels of the two homomorphisms
do not have a significant intersection. However, by Theorem 1 of [9], α and
β are generically injective. This implies that generically the equalizer of the
two homomorphisms is equal to the identity element of F1.

This result implies that the Post Correspondence Problem is generically

9



solvable in free groups, since for two randomly chosen homomorphisms their
equalizer is trivial.
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