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Abstract

In this paper we prove that the fixed subgroup of an arbitrary family
of endomorphisms ψi, i ∈ I, of a finitely generated free group F , is
F -super-compressed. In particular, r(∩i∈IFix ψi) ≤ r(M) for every
subgroup M ≤ F containing ∩i∈IFix ψi. This provides new evidence
towards the inertia conjecture for fixed subgroups of free groups. As
a corollary, we show that, in the free group of rank n, every strictly
ascending chain of fixed subgroups has length at most 2n. This answers
a question of G. Levitt.

1 Introduction

Let F be a free group. We write r(F ) to denote the rank of F , which is the
minimal cardinality of a (free) generating set for F . Since every subgroup of
a free group is free, the same notation applies to subgroups H of F . In the
present paper, although some results are general, we will mostly deal with
finitely generated free groups, i.e. free groups with finite rank.

Let endomorphisms of F act on the right, x 7→ xψ. Given an endomor-
phism ψ of F , its fixed subgroup, denoted Fix ψ, is the subgroup of elements
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in F fixed by ψ, Fix ψ = {x ∈ F |xψ = x}. If Ψ = {ψi | i ∈ I} is a fam-
ily of endomorphisms of F , we denote by Fix Ψ the subgroup of elements
simultaneously fixed by all ψi, Fix Ψ = ∩i∈IFix ψi.

Following the terminology introduced in [10], we say that a subgroup
H ≤ F is 1-endo-fixed if H = Fix ψ for some endomorphism ψ ∈ End(F ).
And we say that H is endo-fixed if H = Fix Ψ for some family of endomor-
phisms Ψ ⊆ End(F ). The concepts of 1-auto-fixed, 1-mono-fixed, auto-fixed
and mono-fixed subgroups are analogously defined.

Bestvina-Handel [2] proved that, if ψ : F → F is an automorphism, then
r(Fix ψ) ≤ r(F ), improving the previously celebrated result of Gersten [6]
about finite generation of such fixed subgroups. Immediately after Bestv-
ina and Handel announced their result, Imrich-Turner published [7], where
they extended it to arbitrary endomorphisms. Some years latter, Dicks-
Ventura [4] introduced the concept of inertia and showed that the fixed
subgroup of an injective endomorphism of F is F -inert. A subgroup H ≤ F
is called F -inert when r(H ∩ K) ≤ r(K) for every K ≤ F . This result
was another extension of the Bestvina-Handel Theorem. Since the family of
F -inert subgroups is closed under intersections, an easy corollary was that
the rank of an arbitrary mono-fixed subgroup of F is also bounded above
by the rank of F . However, in [4] problem 2, it was asked if fixed subgroups
of arbitrary endomorphisms of F are necessarily F -inert, and in [17] it was
conjectured that, in fact, they are. This is still open and we will refer to it
as the “ inertia conjecture”.

Using inertia, Bergman [1] showed that the rank of an arbitrary endo-
fixed subgroup of F is always bounded above by the rank of F , even without
the injectivity hypothesis on the involved endomorphisms. This was the first
evidence in favour of the inertia conjecture.

In [4] the concept of compression of a subgroup of F was introduced,
being a necessary condition for its inertia. We re-estate it here along with
some technical variations.

Let F ab = F/F ′ be the abelianization of F and let π : F → F ab be the
corresponding projection. For any given subgroup H ≤ F , the abelian rank
of H with respect to F, denoted rab(H; F ), is defined as the rank of the free
abelian group Hπ = HF ′/F ′, that is, the rank (as an abelian group) of the
image of H under the global abelianization π. Note that, in general, this is
not the same as r(H ab).

Definition 1.1 Let F be a finitely generated free group and H ≤ F .
We say that H is F -compressed if r(H) ≤ r(K) for every H ≤ K ≤ F .
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Similarly, H is called F -strictly-compressed when r(H) < r(K) for every
H < K ≤ F .

Finally, H is called F -super-compressed if for any subgroup H < K ≤ F ,
one has both r(H) ≤ r(K) and r(H)+rab(H; F ) < r(K)+rab(K; F ). Equiv-
alently, H is F -super-compressed if H is F -compressed and, for every K ≤ F
strictly containing H but having the same rank, rab(H; F ) < rab(K; F ) is
satisfied.

Clearly, every F -strictly compressed and every F -super-compressed sub-
groups of F are F -compressed. Also, every F -inert subgroup of F is F -
compressed, but it is not known if the converse is true. This was stated
in [4] as Problem 1, and in [17] as the “compressed-inert conjecture”.

The main result in the present paper is Theorem 3.4, where a simple
argument (making use of theorems of Bergman, Takahasi, Martino-Ventura,
Bestvina-Handel and Dyer-Scott) is given to prove that arbitrary endo-
fixed subgroups of F are F -super-compressed. In particular, they are F -
compressed, providing new evidence in support of the inertia conjecture.

For this purpose, we will also make use of the concept of algebraic ex-
tension. Following [8], a pair of subgroups H ≤ K of F is called an algebraic
extension if H is not contained in any proper free factor of K. Note that,
in general, if ψ : F → F is an endomorphism and H ≤ K is an algebraic
extension, then Hψ ≤ Kψ need not be algebraic (while in fact it is, if ψ is an
automorphism). A result of Takahasi [14] states that any finitely generated
subgroup H of F has a finite number of algebraic extensions, i.e. there are
only finitely many subgroups K ≤ F such that H is contained in K but
not in any of its proper free factors. Simpler arguments for this result were
recently given independently by Ventura [16], Margolis-Sapir-Weil [9] and
Kapovich-Myasnikov [8]. This result will be crucial in the proof of our main
result.

The structure of the present paper is the following. In section 2 we prove
some general properties of the three concepts of compression for subgroups
of free groups. In section 3 the main result (Theorem 3.4), namely the
F -super-compression of endo-fixed subgroups of F , is proven. Finally, in
section 4 we apply the results to better understanding ascending chains of
endo-fixed subgroups of free groups, and to answer a question of G. Levitt.
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2 Properties of compression

In this section we prove that the three concepts of compression behave well
with respect to free products.

Lemma 2.1 Let U, V be finitely generated subgroups of a free abelian group.
Then,

r(U + V ) = r(U) + r(V )− r(U ∩ V ).

Proof. Noting that r(U) = dimQ(U ⊗Z Q), the formula follows from the
corresponding result in linear algebra. 2

A subgroup R ≤ F is called a retract of F when the identity Id : R → R
extends to a homomorphism ρ : F → R, called a retraction. For example,
free factors of F are retracts of F .

Lemma 2.2 Let F be a free group and let R ≤ F be a retract of F . For
every H ≤ R, rab(H;R) = rab(H; F ).

Proof. The equality between the abelian ranks with respect to R and F
is clear if we show F ′ ∩R = R ′. One of the inclusions is obvious. To show
the other, let ρ : F → R be a retraction and note that if the commutator
of x, y ∈ F lies in R then [x, y] = [x, y]ρ = [xρ, yρ] ∈ R ′, since xρ, yρ ∈ R.
Thus, F ′ ∩R ≤ R ′. 2

Proposition 2.3 Let F be a free group and H = A ∗B a finitely generated
subgroup.

i) If H is F -compressed then A is also F -compressed.

ii) If H is F -strictly-compressed then A is also F -strictly-compressed.

iii) If H has the property that any proper extension, H < K, either sat-
isfies r(H) < r(K) or rab(H; F ) < rab(K; F ), then A has the same
property.

iv) If H is F -super-compressed then A is also F -super-compressed.

Proof. Let L be an arbitrary subgroup of F containing A. Consider
K = 〈L,B〉, which is a subgroup of F containing H, and having rank
r(K) ≤ r(L) + r(B).
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Suppose that H is F -compressed. Then,

r(A) + r(B) = r(H) ≤ r(K) ≤ r(L) + r(B).

So, r(A) ≤ r(L). This proves (i).

Now, suppose that H is F -strictly-compressed. By (i), A is F -compressed
and hence, to see (ii), it only remains to show that r(A) < r(L) whenever
A < L. Suppose then that A < L. If A < L ≤ A ∗ B then A is a proper
free factor of L and we are done. Otherwise, there exists x ∈ L, x 6∈ A ∗B.
Thus H < K and, by hypothesis,

r(A) + r(B) = r(H) < r(K) ≤ r(L) + r(B).

So, r(A) < r(L). This completes (ii).

Next suppose that for any subgroup K properly containing H, either
r(H) < r(K) or rab(H;F ) < rab(K;F ). To prove the same for A consider a
subgroup L strictly containing A. Now if L ≤ H = A∗B then A is a proper
free factor of L which implies that r(A) < r(L) and we would be done. So
suppose that L is not a subgroup of H and hence the subgroup K = 〈L,B〉
strictly contains H.

If r(H) < r(K) then r(A) + r(B) = r(H) < r(K) ≤ r(L) + r(B), which
implies that r(A) < r(L).

If, on the other hand, rab(H; F ) < rab(K; F ) then, using Lemma 2.1,

r(Kπ) = r(Lπ) + r(Hπ)− r(Lπ ∩Hπ),

where π : F → F ab denotes the abelianization map. But A ≤ L ∩H, so

rab(K; F ) ≤ rab(L; F ) + rab(H; F )− rab(A; F )
< rab(L; F ) + rab(K; F )− rab(A; F ).

Hence, rab(A;F ) < rab(L;F ). This completes (iii).

Finally, (iv) follows directly from (i) and (iii). 2

Proposition 2.4 Let F be a free group, and A ≤ H ≤ F , B ≤ K ≤ F and
M ≤ F be subgroups such that F = H ∗K ∗M .

i) If A is H-compressed and B is K-compressed, then A ∗ B is F -com-
pressed.

ii) If A is H-strictly-compressed and B is K-strictly-compressed, then
A ∗B is F -strictly-compressed.

5



iii) If A is H-super-compressed and B is K-super-compressed, then A ∗B
is F -super-compressed.

Proof. Let A ∗B ≤ L ≤ F = H ∗K ∗M . Writing A ≤ LA = L∩H ≤ H
and B ≤ LB = L ∩K ≤ K, the Kurosh Subgroup Theorem ensures us the
existence of a subgroup L′ ≤ F such that L = LA ∗ LB ∗ L′.

Assume the hypothesis in (i). Then, r(A) ≤ r(LA), r(B) ≤ r(LB) and
so,

r(A ∗B) = r(A) + r(B) ≤ r(LA) + r(LB) + r(L′) = r(L).

This proves (i).

The same argument works to prove (ii), with the additional observation
that if A ∗ B < L then either A < LA, or B < LB or L′ 6= 1. Thus, by
the hypothesis in (ii), either r(A) < r(LA), or r(B) < r(LB) or L′ 6= 1.
In this situation, the inequality in the above computation is strict, that is,
r(A ∗B) < r(L).

Finally, assume the hypothesis in (iii). Using (i) it only remains to prove
that if A ∗ B < L and r(A ∗ B) = r(L) then rab(A ∗ B; F ) < rab(L; F ).
In this situation, r(A) = r(LA), r(B) = r(LB) and L′ = 1. But either
A < LA, or B < LB so, by the hypothesis, either rab(A;H) < rab(LA; H)
or rab(B; K) < rab(LB; K). Thus, using Lemma 2.2,

rab(A ∗B;F ) = rab(A; F ) + rab(B; F )
= rab(A; H) + rab(B; K)
< rab(LA;H) + rab(LB; K)
= rab(LA;F ) + rab(LB; F )
= rab(LA ∗ LB; F )
= rab(L;F ). 2

3 Compression of fixed subgroups

In [11], Martino-Ventura gave an explicit description of 1-auto-fixed sub-
groups of finitely generated free groups. We state it here for later use.

Theorem 3.1 (Martino-Ventura, [11]) Let F be a (non-trivial) finitely
generated free group and let ψ ∈ Aut(F ) with Fix ψ 6= 1. Then, there exist
integers r ≥ 1, s ≥ 0, ψ-invariant non-trivial subgroups K1, . . . , Kr ≤ F ,
primitive elements y1, . . . , ys ∈ F , a subgroup L ≤ F , and elements 1 6=
h′j ∈ Hj = K1 ∗ · · · ∗Kr ∗ 〈y1, . . . , yj〉, j = 0, . . . , s− 1, such that

F = K1 ∗ · · · ∗Kr ∗ 〈y1, . . . , ys〉 ∗ L
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and yjψ = h′j−1yj for j = 1, . . . , s; moreover,

Fix ψ = 〈w1, . . . , wr, y
−1
1 h0y1, . . . , y−1

s hs−1ys〉

for some non-proper powers 1 6= wi ∈ Ki and 1 6= hj ∈ Hj such that
hjψ = h′jhjh

′−1
j , i = 1, . . . , r, j = 0, . . . , s− 1. 2

Using Theorem 3.1 and the standard covering theory for graphs (see [13],
[16] or [8]), we can extend Theorem 2.2 in [16] to arbitrary 1-auto-fixed
subgroups of F . Namely, we will show that for any given automorphism
ψ : F → F , every subgroup of F strictly containing Fix ψ has either bigger
rank or bigger abelian rank than those of Fix ψ. However, we shall need a
technical lemma in order to accomplish our goal. After this, we will have all
the ingredients to prove our main result, stating the F -super-compression
of any endo-fixed subgroup of F .

Lemma 3.2 Let F be a finitely generated free group, let ψ : F → F be an
automorphism and suppose that Fix ψ = Fix ψm for all m ≥ 1. Let a basis
for F and Fix ψ be given as in Theorem 3.1. Then, (Fix ψ)π ≤ H0π, where
π is the natural abelianization map π : F → F ab.

Proof. We call an element w ∈ F conjugacy-fixed by ψ if wψ = wg for
some g ∈ F . For any given w ∈ Hs, we shall refer to the smallest index k
such that w ∈ Hk as the height of w. Note that then, w 6∈ Hk−1, i.e. the
generator yk occurs in the reduced expression of w.

In order to prove the lemma we shall in fact prove the stronger statement
that if w ∈ Hs is conjugacy-fixed by ψ then wπ ∈ H0π.

Let us argue by contradiction. So, let us assume the existence of some
j = 1, . . . , s for which there are conjugacy-fixed words in Hs with exponent
sum of yj being non-zero. Given such a j, we choose w of minimal height,
say k, among those words. Clearly, 1 ≤ j ≤ k.

Now observe that we may replace w by any of its cyclically reduced
conjugates without changing any of its defining properties. Clearly, being
conjugacy-fixed by ψ must remain unchanged, as must the exponent sum of
yj , and the height must remain unchanged due to the minimality assump-
tion. Hence we shall assume that w is cyclically reduced and, in fact, after
possibly taking an inverse, we may assume that the last letter of w is yk.
We now prove the following
Claim: If u ∈ Hs is cyclically reduced of height k ≥ 1 and the last letter of
u is yk, then uψ ∈ Hs is also cyclically reduced of height k with last letter
equal to yk.
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Proof of claim. The word u can be written in the form

u = g0y
ε1
k g1y

ε2
k · · · yεt−1

k gt−1yk,

where each εi = ±1, each gi (possibly trivial) is of height less than k (so, it
belongs to Hk−1), and the product is reduced in the sense that if εi = −εi+1,
then gi 6= 1. As u is cyclically reduced, this last condition is understood to
hold for subscripts modulo t (with εt = 1). Note that we are using the fact
that Hk = Hk−1 ∗ 〈yk〉.

Now, if we apply ψ, (recall that ykψ = h′k−1yk for some h′k−1 ∈ Hk−1)
we get

uψ = (g0ψ)(h′k−1)
λ1yε1

k (h′k−1)
µ1(g1ψ)(h′k−1)

λ2yε2
k (h′k−1)

µ2 · · ·

· · · (h′k−1)
λt−1y

εt−1

k (h′k−1)
µt−1(gt−1ψ)h′k−1yk,

where λi = εi+1
2 and µi = εi−1

2 . Note that in the previous expression there
is no cancellation between consecutive yk’s since, if εi = −εi+1, then the
subword of uψ between them is either giψ or (h′k−1)

−1(giψ)h′k−1, which are
both non-trivial. Since this holds modulo t, and Hk−1 is ψ-invariant, we
have shown that the image under ψ of a cyclically reduced word u in Hs, of
height k and ending in yk is another cyclically reduced word in Hs, of height
k and ending in yk. This concludes the proof of the claim.

Applying this claim to our element w, we have that wψm is cyclically
reduced for all m ≥ 1. And, since w is conjugacy-fixed, these are all con-
jugates. But w has only finitely many cyclically reduced conjugates, hence
w ∈ Fix ψm for some m ≥ 1. So, w ∈ Fix ψ, by hypothesis. Now, it is easy
to see that

Fix ψ ∩Hk = Fix ψHk
= Fix ψHk−1

∗ 〈y−1
k hk−1yk〉

and, by the other hand, the exponent sum of yj in w ∈ Fix ψ ∩ Hk is
non-zero. Thus, j 6= k that is, 1 ≤ j < k.

Moreover, the presence of w in Fix ψHk−1
∗ 〈y−1

k hk−1yk〉 implies that
either some word in Fix ψHk−1

or the element hk−1 has non-zero exponent
sum in yj . In either case, we get a word, which is conjugacy-fixed by ψ, whose
exponent sum in yj is non-zero and of height less than k. This contradicts
our minimal height assumption and hence concludes the proof. 2

Proposition 3.3 Let F be a finitely generated free group and let ψ : F → F
be an automorphism. Then, for every K with Fix ψ < K ≤ F , either
r(Fix ψ) < r(K) or rab(Fix ψ;F ) < rab(K; F ).
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Fig. 1.

Proof. The result is clear if Fix ψ = 1. So, assume Fix ψ 6= 1.
Now, it is easy to see that, for every positive integer s, ψ restricts to a

finite order automorphism of Fix ψs, whose fixed subgroup is Fix ψ itself.
So, by a result of Dyer-Scott [5], Fix ψ is a free factor of Fix ψs. Thus by
Proposition 2.3 (iii), it is sufficient to prove the current proposition for ψs

for some positive integer s.
Now, by the main Theorem of [2], each Fix ψs has rank bounded by

the rank of F . Therefore we can choose an s so that the rank of Fix ψs

is maximal. Combining this with the fact that Fix ψs is a free factor of
Fix ψsm, we have that Fix ψsm = Fix ψs for every m ≥ 1 (hence, we can
apply Lemma 3.2 to ψs). Using the previous observation, we can assume
that s = 1.

Consider the description of Fix ψ given in Theorem 3.1. Now, the ar-
gument works exactly as the proof given for Theorem 2.2 in [16]. The core
graph Z corresponding to Fix ψ, with base point u and the corresponding la-
bels on edges and circles, is depicted in Fig. 1. Let E ′ be the set of edges in Z
whose deletion disconnects the graph; for j = 1, . . . , s denote by ej the edge
in E ′ with label yj . Observe that, since hj−1 ∈ K1 ∗ · · · ∗Kr ∗〈y1, . . . , yj−1〉,
none of the edges in the component of Z − E ′ containing ιej has label yj .

By Theorem 1.7 in [16], it is enough to prove that any proper extension
Fix ψ < K given by a quotient Z of Z has either bigger rank or bigger
abelian rank than those of Fix ψ. Fix one such K (and the corresponding
Z 6= Z), and let J be the set of those j such that some vertex in the
component of Z − E ′ containing ιej gets identified with some vertex of a
different component of Z − E ′.
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Suppose J 6= ∅, and let j0 be the largest element of J . Clearly, there
is a closed path in the quotient graph Z based at u which determines an
element, x ∈ K, crossing exactly one edge labelled yj0 , and only once.
Hence xπ 6∈ H0π. However, by Lemma 3.2, (Fix ψ)π ≤ H0π which is a
direct summand of F ab. Thus, rab(Fix ψ; F ) < rab(K; F ).

This leaves the case where J = ∅, that is, where vertices in different com-
ponents of Z−E ′ remain unidentified in Z 6= Z. In this case, Z is the same
as Z with every component of Z − E ′ replaced by some quotient of itself
(with at least one of those quotients being proper). For every i = 1, . . . , r
and j = 0, . . . , s − 1, the elements wi and hj are not proper powers, so
the subgroups 〈wi〉 and 〈hj〉 are F -strictly compressed. Thus, by Propo-
sition 2.4 (ii), 〈w1, . . . , wr〉 is F -strictly compressed too. We deduce that
r(Fix ψ) < r(K). 2

Note that Proposition 3.3 is not saying that 1-auto-fixed subgroups of F
are F -compressed, since the statement leaves the possibility of the existence
of some subgroup Fix ψ < K ≤ F with bigger abelian rank but smaller rank
than those of Fix ψ (in fact, in the case J 6= ∅ we have no control on the
rank of the graph Z). In the next theorem we give an argument showing
this compression.

Theorem 3.4 Let F be a finitely generated free group. Any endo-fixed sub-
group of F is F -super-compressed.

Proof. Let Ψ ⊆ End(F ). First, we will prove that Fix Ψ is F -compressed.
Then, using Proposition 3.3, we will extend this to show that it is F -super-
compressed.

By [6], Fix Ψ is finitely generated. Let r be the minimum among the
ranks of all those subgroups of F containing Fix Ψ. Note that r ≤ r(Fix Ψ),
and the equality holds if and only if Fix Ψ is F -compressed.

Consider M = {M ≤ F |Fix Ψ ≤ M, r(M) = r} 6= ∅. Observe that,
by the minimality of r, every M ∈ M is an algebraic extension of Fix Ψ.
Hence, by [8], [9], [14] or [16], |M| < ∞.

By [10] Corollary 3.4, there exists ϕ (in the submonoid of End(F ) gen-
erated by Ψ) such that Fix Ψ is a free factor of Fix ϕ. As in the proof of
Proposition 3.3, using Dyer-Scott [5], we have that Fix ϕ is a free factor of
Fix ϕs. Hence, Fix Ψ is a free factor of Fix ϕs for every s ≥ 1.

Now choose an arbitrary M ∈ M. Since the rank of a subgroup never
increases when taking images, it is clear that Mk = Mϕk ∈ M, for every
k ≥ 0. By the finiteness of M, there exists an integer k ≥ 0 and a positive
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integer s ≥ 1 such that Mk+s = Mkϕ
s = Mk. Then, ϕs restricts to an

automorphism of Mk, say ϕs
Mk

∈ Aut(Mk). Now, using Bestvina-Handel
Theorem,

r(Mk ∩ Fix ϕs) = r(Fix ϕs
Mk

) ≤ r(Mk) = r.

But we noted above that Fix Ψ is a free factor of Fix ϕs. Hence, it is also a
free factor of Mk ∩ Fix ϕs. Thus, r(Fix Ψ) ≤ r that is, r(Fix Ψ) = r. This
means that Fix Ψ is F -compressed.

It remains to show rab(Fix Ψ; F ) < rab(M ;F ), assuming M 6= Fix Ψ.
In [15], Turner showed that the stable image of ϕs,

R = ∩i≥1F (ϕs)i = ∩i≥1Fϕi,

is a retract of F where ϕs restricts to an automorphism. Let ϕs
R ∈ Aut(R)

denote the restriction of ϕs to R. Observe that Fix ϕs
R = Fix ϕs since

Fix ϕs ≤ R.
Having proved that endo-fixed subgroups of F are F -compressed, and

using Proposition 3.3, we see that Fix ϕs = Fix ϕs
R is R-super-compressed.

Recall that Fix Ψ is a free factor of Fix ϕs and hence, by Proposition 2.3 (iv),
Fix Ψ is also R-super-compressed.

Now, observe that Mk cannot be equal to Fix Ψ. For, if it were, then as
ϕ acts as the identity on Fix Ψ which is a proper subgroup of M , the map
ϕk : M → Mk would be a surjective map with non-trivial kernel between two
free groups of the same rank. As finitely generated free groups are Hopfian,
this cannot be the case and hence Fix Ψ < Mk.

But, since r(Fix Ψ) = r = r(Mk) and Mk ≤ R, the R-super-compression
of Fix Ψ implies that

rab(Fix Ψ; R) < rab(Mk; R)

and, by Lemma 2.2,

rab(Fix Ψ;F ) < rab(Mk;F ).

Finally, since ϕk : M → Mk induces a surjective homomorphism from
MF ′/F ′ to MkF

′/F ′, we have

rab(Fix Ψ; F ) < rab(Mk; F ) ≤ rab(M ; F ).

This completes the proof. 2

Corollary 3.5 Let F be a finitely generated free group. Any endo-fixed
subgroup of F is F -compressed.

11



4 Ascending chains of fixed subgroups

In this last section, we use the information obtained before to analyze strictly
ascending chains of endo-fixed subgroups of a finitely generated free group.

Theorem 4.1 In a free group F of rank n, every strictly ascending chain
of endo-fixed subgroups has length at most 2n.

Furthermore, there exist such chains of length 2n − 1, even using only
1-auto-fixed subgroups.

Proof. By the above Theorem 3.4, the function r(−)+ rab(−; F ) strictly
increases in any step of such an ascending chain. And, clearly, its minimum
and maximum values among endo-fixed subgroups of F , are 0 (for the trivial
subgroup) and 2n (for F itself), respectively. So, strictly ascending chains
of endo-fixed subgroups of F have length at most 2n.

Now, we need to construct such a chain with length 2n − 1, and using
only 1-auto-fixed subgroups. Let {x1, . . . , xn} be a basis of F . Given two
integers 1 ≤ p ≤ q ≤ n, let r, s, t ≥ 0 be such that p = r, q = r + s and
n = r + s + t. Define ψp,q to be the automorphism of F given by

ψp,q : F 7→ F
xi 7→ xi, i = 1, . . . , r

xj 7→ xj
1xj , j = r + 1, . . . , r + s

xk 7→ x−1
k , k = r + s + 1, . . . , r + s + t.

It is not difficult to see that

Fix ψp,q = 〈x1, . . . , xr, x
−1
r+1x1xr+1, . . . , x−1

r+sx1xr+s〉.

We have rab(Fix ψp,q; F ) = r = p and r(Fix ψp,q) = r+s = q. The following
is a strictly ascending chain of 1-auto-fixed subgroups with length 2n− 1:

1 < Fix ψ1,1 < · · · < Fix ψ1,n < Fix ψ2,n < · · · < Fix ψn,n = F. 2

As a corollary, we can answer a question of G. Levitt.

Corollary 4.2 Let F be a finitely generated free group and let Ψ ⊆ End(F ).
Then, there exists a finite subset Ψ0 ⊆ Ψ such that Fix Ψ0 = Fix Ψ. More-
over, Ψ0 can be chosen to have at most 2r(F ) elements.
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Proof. The result is clear if Ψ contains only the identity. Otherwise,
pick any 1 6= ψ1 ∈ Ψ and let Ψ1 = {ψ1}. If Fix Ψ1 = Fix Ψ we are done.
Otherwise, we can find a ψ2 ∈ Ψ such that, putting Ψ2 = Ψ1∪{ψ2}, we have
Fix Ψ2 < Fix Ψ1. We continue this process and continue to define subsets
Ψk of Ψ. At each stage, either Fix Ψ = Fix Ψk or we can find ψk+1 ∈ Ψ
such that, putting Ψk+1 = Ψk ∪ {ψk+1}, we have Fix Ψk+1 < Fix Ψk. In
particular, either Fix Ψ = Fix Ψk for some 1 ≤ k ≤ 2r(F ) or, otherwise, we
would have a strictly descending chain of endo-fixed subgroups,

Fix Ψ < Fix Ψ2r(F ) < · · · < Fix Ψ2 < Fix Ψ1 < F,

with length 2r(F ) + 1, contradicting Theorem 4.1. Hence, Fix Ψ = Fix Ψk

for some 1 ≤ k ≤ 2r(F ). 2

Theorem 4.1 leaves the four questions of whether the length of the longest
strictly ascending chains of 1-auto-fixed, 1-endo-fixed, auto-fixed or endo-
fixed subgroups of the free group of rank n, is either 2n−1 or 2n. For n = 2
the four questions coincide since the four families of subgroups do coincide
(see Theorem 3.9 in [16]). For n ≥ 3, the families of 1-endo-fixed and 1-auto-
fixed subgroups are known to be different (see [12]), while in [10] the families
of 1-auto-fixed and auto-fixed subgroups are conjectured to coincide. So, in
general, the four questions are not the same.

In the following proposition we show that, in the cases n = 2 and n = 3,
and for 1-auto-fixed subgroups, the exact maximum length is 2n− 1. In the
remark below we point out a reason why it seems difficult to extrapolate the
arguments given to the general case.

Let F be a free group of rank n ≥ 1.
Let 0 ≤ p ≤ q ≤ n be two integers. A subgroup H ≤ F is said to be of

type (p, q) if rab(H;F ) = p and r(H) = q. And, given also 0 ≤ p′ ≤ q′ ≤ n,
an inclusion H < K of subgroups of F is said to be of type “(p, q) < (p′, q′)”
when H is of type (p, q) and K is of type (p′, q′). Note that, by Theorem 3.4,
any strict inclusion of endo-fixed subgroups is of type “(p, q) < (p′, q′)”,
where p ≤ p′, q ≤ q′, and at least one of these two inequalities is strict.

By Corollary 3.4 in [10], Corollary 2 in [15], and Proposition 1 in [3],
any endo-fixed subgroup of F with rank n is automatically 1-auto-fixed, and
contains a primitive element. Thus, no endo-fixed subgroup of F is of type
(0, n). Hence, the inclusion types “(0, n− 1) < (0, n)” and “(0, n) < (1, n)”
do not appear in any ascending chain of endo-fixed subgroups. Clearly, the
type “(0, 1) < (1, 1)” is also impossible there, because any endomorphism
fixing a power of an element, fixes the element itself. We will see below
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that all the other possible inclusion types can be realized by 1-auto-fixed
subgroups.

Proposition 4.3 For n = 2 and n = 3, the length of the longest strictly
ascending chains of 1-auto-fixed subgroups of the free group of rank n, is
2n− 1.

Proof. Let F be a free group of rank n. We already know the existence of
strictly ascending chains of 1-auto-fixed subgroups of F with length 2n− 1.
Assume now that H0 < H1 < · · · < H2n is such a chain with length 2n and
we will reach a contradiction when n = 2 or n = 3.

Since in any inclusion the value of r(−)+ rab(−; F ) increases, the length
of the chain forces H0 to be of type (0, 0), H2n of type (n, n), and every
inclusion in the chain of type either “(p, q) < (p+1, q)” or “(p, q) < (p, q+1)”
for some p, q.

Suppose n = 2. The impossibility of the inclusion types “(0, 1) < (1, 1)”,
“(0, 1) < (0, 2)” and “(0, 2) < (1, 2)” leads immediately to a contradiction.

Suppose n = 3. The impossibility of the inclusion types “(0, 1) < (1, 1)”,
“(0, 2) < (0, 3)” and “(0, 3) < (1, 3)” implies that H0, H1, H2, H3, H5

and H6 are of type (0, 0), (0, 1), (0, 2), (1, 2), (2, 3) and (3, 3), respectively.
Furthermore, the type of H4 is either (2, 2) or (1, 3).

By Theorem 3.1, there exists a basis {a, b, c} of F and two non-proper
powers w, h ∈ 〈a, b〉′ such that H2 = 〈w, c−1hc〉. Note that, since w 6= 1 has
trivial abelianization, K = 〈a, b〉 is the smallest free factor of F containing
w. Consider the core graph X2 corresponding to H2, which consists of two
circles labelled w and h, and an edge e with label c from a vertex ιe in the
circle with label h to a vertex τe in the circle with label w (and with τe
being the base point). Since r(H2) = r(H3) = 2, the inclusion H2 < H3

is algebraic and so, the core graph X3 corresponding to H3 is a quotient of
X2. In particular, the image of e, say e′, is the unique edge in X3 with label
c. If X3 − {e′} were disconnected then H2 = H3 (because w and h are not
proper powers), which is not the case. Thus, X3 − {e′} is connected and
hence, it is a circle with two (possibly trivial) hairs going to ιe′ and τe′ (the
base point being τe′). Now, let u ∈ K be the label of a (possibly trivial)
path in X3 − {e′} from τe′ to ιe′. It is clear that H3 = 〈w, uc〉.

Let α be the automorphism of F defined by a 7→ a, b 7→ b, c 7→ u−1c.
By looking at the corresponding core graph, it is clear that H3α = 〈w, c〉,
is F -strictly-compressed (again using the fact that w ∈ K is not a proper
power). Hence, H3 is also F -strictly-compressed, which implies that H4,
and so H4α, is of type (1, 3) (and not (2, 2)).
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Let ψ ∈ Aut(F ) be such that Fix ψ = H4 ≥ H3 = 〈w, uc〉, and let
ψ′ = α−1ψα. A simple computation shows that Fix ψ′ = H4α ≥ 〈w, c〉. We
noted above that K is the smallest free factor of F containing w = wψ′, so
K is ψ′-invariant. Then (and using also the fact that ψ′ fixes c) it is easy
to see that H4α = Fix ψ′ = Fix ψ′K ∗ 〈c〉. But H4α is of type (1, 3), hence
Fix ψ′K ≤ K is of type (0, 2). This is a contradiction with the fact that
Fix ψ′K is a 1-auto-fixed subgroup of the free group K, of rank 2. 2

Remark 4.4 Note that the argument given in the previous observation
for the case n = 3 is global in the sense that, assuming the existence of
a chain of length 2n, we get a contradiction by analyzing more than one
consecutive inclusion. It is impossible to do this locally, that is, looking
only at some particular inclusion in the chain, because, as we see below, all
possible types of inclusions except “(0, n−1) < (0, n)”, “(0, n) < (1, n)” and
“(0, 1) < (1, 1)” can be realized by 1-auto-fixed subgroups.

Let {x1, . . . , xn} be a basis of F .
Let 1 ≤ p ≤ q ≤ n be two integers and choose r, s, t ≥ 0 and ψp,q as in

the proof of Theorem 4.1.
Suppose that p + 1 ≤ q. Then, s ≥ 1 and changing the ψp,q-image of

xr+1 from xr+1
1 xr+1 to xr+1 we obtain another automorphism ψ of F such

that
Fix ψ = 〈x1, . . . , xr, xr+1, x

−1
r+2x1xr+2, . . . , x−1

r+sx1xr+s〉.
Hence, Fix ψp,q < Fix ψ is an strict inclusion of 1-auto-fixed subgroups of
type “(p, q) < (p + 1, q)”.

Suppose that q + 1 ≤ n. Then, t ≥ 1 and changing the ψp,q-image of
xr+s+1 from x−1

r+s+1 to xr+s+1
1 xr+s+1 we obtain another automorphism ψ of

F such that

Fix ψ = 〈x1, . . . , xr, x
−1
r+1x1xr+1, . . . , x−1

r+sx1xr+s, x
−1
r+s+1x1xr+s+1〉.

Hence, Fix ψp,q < Fix ψ is an strict inclusion of 1-auto-fixed subgroups of
type “(p, q) < (p, q + 1)”.

Now, let 0 = p ≤ q ≤ n−1 be two integers with 1 ≤ q. Choose r, s, t ≥ 0
such that r = 2, q + 1 = r + s and n = r + s + t. Define ψ0,q to be the
automorphism of F given by

ψ0,q : F 7→ F
x1 7→ [x1, x2]−1x1[x1, x2]
x2 7→ [x1, x2]−1x2[x1, x2]
xj 7→ [x1, x2]jxj , j = 3, . . . , r + s

xk 7→ x−1
k , k = r + s + 1, . . . , r + s + t.
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It is not difficult to see that

Fix ψ0,q = 〈[x1, x2], x−1
3 [x1, x2]x3, . . . , x−1

r+s[x1, x2]xr+s〉,

which is a 1-auto-fixed subgroup of type (0, 1 + s), that is, (p, q).
Suppose 2 ≤ q. Then, s ≥ 1 and changing the ψ0,q-image of x3 from

[x1, x2]3x3 to x3 we obtain another automorphism ψ of F such that

Fix ψ = 〈[x1, x2], x3, x
−1
4 [x1, x2]x4, . . . , x−1

r+s[x1, x2]xr+s〉.

Hence, Fix ψ0,q < Fix ψ is an strict inclusion of 1-auto-fixed subgroups of
type “(0, q) < (1, q)”.

Suppose q ≤ n − 2. Then t ≥ 1 and changing the ψ0,q-image of xr+s+1

from x−1
r+s+1 to [x1, x2]r+s+1xr+s+1 we obtain another automorphism ψ of F

such that

Fix ψ = 〈[x1, x2], x−1
3 [x1, x2]x3, . . . , x−1

r+s[x1, x2]xr+s, x
−1
r+s+1[x1, x2]xr+s+1〉.

Hence, Fix ψ0,q < Fix ψ is an strict inclusion of 1-auto-fixed subgroups of
type “(0, q) < (0, q + 1)”.

Finally, the only remaining case is p = q = 0. And it is obvious that
there are inclusions of 1-auto-fixed subgroups of type “(0, 0) < (0, 1)”. 2
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