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Resum

We show that, in the free group F of rank n, n is the maximal length of strictly ascending
chains of maximal rank fixed subgroups, that is, rank n subgroups of the form Fix φ for some
φ ∈ Aut(F ). We further show that, in the rank two case, if the intersection of an arbitrary
family of proper maximal rank fixed subgroups has rank two then all those subgroups are
equal. In particular, every G ≤ Aut(F ) with r(Fix G) = 2 is either trivial or infinite cyclic.

1. The fringe of a subgroup

Throughout this section let I be an arbitrary non-empty set, and let FI = 〈I | 〉
denote the free group on I.

1.1 Definitions. A graph X = (V, E, ι, τ) consists of two disjoint sets V , E
(usually denoted V X and EX) and two maps ι, τ : EX → V X. The elements of
V X and EX are called the vertices and edges of X, respectively. The maps ι and
τ are the incident maps of X. We consider ι and τ extended to the disjoint union
EX ∨ (EX)−1 by setting ιe−1 = τe and τe−1 = ιe, e ∈ EX.

The basic example is the I-bouquet, RI = ({∗}, I, ι, τ) where ι and τ are each
(necessarily) the constant map.

The concepts of path, trivial path, fundamental group at a vertex, connected
graph, connected components of a graph, subgraph, graph morphism and graph iso-
morphism are the standard ones.
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By the link of a vertex v ∈ V X, we mean lk(v) = {e ∈ EX ∨ (EX)−1 | ιe = v}.
The valency of v is |lk(v)|. We say that X is a finite core graph if X is finite (i.e.,
V X and EX are both finite) and X has no vertices of valency 0 or 1. The core
of a graph X, denoted core(X), is the union of the finite core subgraphs of X. If
core(X) = X then we say that X is a core graph. A forest is a graph whose core is
empty.

A tree is a connected forest. It is easy to see that, given a vertex v of X not
in a tree component of X, the component of X −E(core(X)) containing v contains
exactly one vertex belonging to core(X); this vertex is called the root of v, denoted
v̂; note that v̂ = v if and only if v ∈ core(X).

Let X be a connected graph and v a vertex of X. The fundamental group of X
at v, denoted π(X, v), is a free group and its isomorphism class (i.e. its rank) does
not depend on v. This rank (possibly infinite) is the rank of X, denoted r(X). For
example, π(RI , ∗) = FI and r(RI) = |I|. It is easy to see that r(X) = r(core(X));
in fact, for v ∈ core(X), π(X, v) = π(core(X), v). It is well known that if Y is a
subgraph of X and u ∈ V Y ⊆ V X then π(Y, u) is a free factor of π(X, u).

Let f : X → Y be a graph morphism and v ∈ V X. We can define the group
morphism π(X, v) → π(Y, vf), p 7→ pf , and the map lk(v) → lk(vf), e 7→ ef ,
e−1 7→ (ef)−1, e ∈ EX, both denoted also by f . As in [6], when the latter map is
injective (resp. surjective, resp. bijective) for every v ∈ V X, we say that f is an
immersion (resp. locally surjective, resp. a covering).

Let X be a graph and let ∼ be an equivalence relation on the set of vertices
V X. By the quotient graph X/∼ we mean the graph ((V X)/∼, EX, ι, τ) where
the incident functions are those of X composed with the projection onto (V X)/∼.
Let : X → X/∼ be the natural projection, a graph morphism. For example, if
∼ is the trivial equivalence relation on V X then X/∼= REX . Suppose now that
f : X → Y is a graph morphism and ∼ is an equivalence relation on V X such that
u ∼ v implies uf = vf . In this case, f factors through the natural graph morphism
f∼ : X/∼→ Y , that is, f = f∼. Furthermore, if f is locally surjective then so is f∼.
2

1.2 Covering theory. Covering theory for graphs is a special case of the
topological theory of covering spaces. To fix notation we collect together some well-
known results (see, for example, [6]) that we will use later.

(a) (Path-lifting) Let f : X → Y be a covering. For any vertex u ∈ V X and any
path p in Y with ιp = uf there exists a unique path p̃ in X such that ιp̃ = u
and p̃f = p. Such a p̃ is called the lifting of p with initial vertex u.

(b) (Lifting Lemma) Let f : Y → Z be a covering, let g : X → Z be a graph
morphism with X a connected graph, and let u ∈ V X and v ∈ V Y such that
ug = vf . There exists a graph morphism g̃ : X → Y satisfying g = g̃f and
ug̃ = v if and only if (π(X, u))g ⊆ (π(Y, v))f ; in this case, g̃ is unique, and
will be called the lifting of g sending u to v. Furthermore, if g is an immersion,
or is locally surjective, or is a covering, then so is g̃.



(c) (Existence of coverings) Let Y be a connected graph, v ∈ V Y and H ≤ π(Y, v).
There exists a connected covering, f : X → Y , and a vertex u ∈ V X such that
uf = v and (π(X, u))f = H; moreover, f is unique in the sense that for any
such f ′ : X ′ → Y and u′ ∈ V X ′ there exist a graph isomorphism g : X → X ′

satisfying ug = u′ and f = gf ′.

(d) (π-injectivity) If f : X → Y is an immersion then, for any vertex v ∈ V X, the
corresponding group morphism π(X, v) → π(Y, vf) is injective. 2

The Folding Lemma due to J. Stallings (see 3.3 in [6]) folds pairs of edges one
by one, so works for finite graphs. We need here an extended version suitable for
arbitrary graphs.

1.3 Folding Lemma. Let f : X → Y be a graph morphism. There exists a
graph X ′, an immersion f ′ : X ′ → Y and a graph morphism κ : X → X ′ such that
f = κf ′ and, for every vertex u ∈ V X, (π(X, u))f = (π(X ′, uκ))f ′. Furthermore,
if f is locally surjective then so is f ′.

Proof. Let ∼ be the equivalence relation on the set of vertices of X such that
u ∼ v if and only if there exist a path p in X from u to v such that pf cancels to a
trivial path in Y . In particular, if u ∼ v then u and v belong to the same component
of X, and uf = vf .

Consider now the quotient graph X/∼, and the graph morphisms : X → X/∼
and f∼ : X/∼→ Y . Let X ′ denote the graph obtained from X/∼ by identifying
edges which have the same initial vertex, and the same terminal vertex, and the
same image under f∼; so, V X ′ = V (X/∼) = (V X)/∼. Let κ′ : X/∼→ X ′ and
f ′ : X ′ → Y be the natural graph morphisms, and let κ = κ′.

By construction, it is clear that f = κf ′ and that f ′ is locally surjective if f is.
Note that if two edges e1, e2 ∈ E(X/∼) satisfy ιeε

1 = ιeε
2 and e1f∼ = e2f∼ for some

ε = ±1, then τeε
1 = τeε

2, so they are identified in X ′. Thus, f ′ is an immersion.
Now consider a vertex u ∈ V X. It is clear that (π(X ′, uκ))f ′ = (π(X/∼, u))f∼,
and that (π(X, u))f ⊆ (π(X/∼, u))f∼. Thus, it remains to prove the inclusion
(π(X/∼, u))f∼ ⊆ (π(X, u))f . Let p = eε1

1 · · · eεn
n ∈ π(X/∼, u) be a closed path at u.

The edges e1, · · · , en ∈ EX need not form a path in X but, by definition of ∼, there
exist paths in X, pi, i = 0, · · · , n, such that ιp0 = u, ιpi = τeεi

i for i = 1, · · · , n,
τpi = ιe

εi+1

i+1 for i = 0, · · · , n − 1, τpn = u, and pif is trivial for i = 0, · · · , n.
Now q = p0e

ε1
1 p1 · · · pn−1e

εn
n pn ∈ π(X, u) is a path in X closed at u and satisfying

qf = pf∼. This completes the proof of the lemma. 2

1.4 Definitions. In the group FI , we will use the exponential notation to
denote right conjugation, that is, xy = y−1xy, x, y ∈ FI .

An I-labelled graph (X, ρ) is a graph X together with a map ρ : EX → I. This
can be thought of as a graph X with a specified graph morphism ρ : X → RI . An
I-labelled graph morphism (resp. I-labelled graph isomorphism), f : (X, ρ) → (Y, σ),
is a graph morphism (resp. graph isomorphism) between the corresponding graphs,
f : X → Y , respecting the labels, that is, satisfying ρ = fσ. By an I-labelled



graph immersion, (resp. a locally surjective I-labelled graph, resp. an I-labelled
graph covering) we mean an I-labelled graph (X, ρ) such that ρ is an immersion
(resp. a locally surjective graph morphism, resp. a covering). Note that when
f : (X, ρ) → (Y, σ) is an I-labelled graph morphism, if ρ is an immersion then so is
f ; and if ρ and σ are both coverings then so is f .

Applying 1.2(c) to RI , we can canonically associate to each subgroup H ≤ FI ,
a connected I-labelled graph covering; it will be denoted (TH , ρH). A vertex v ∈
V TH as in 1.2(c) (not necessarily unique) is called a base point. By construction,
(π(TH , v))ρH = H. The core of TH will be denoted XH . It is easy to see that
H ≤ FI is finitely generated if and only if XH is a finite graph. 2

Let H ≤ FI . Consider (TH , ρH), the corresponding I-labelled graph covering
with base point u. Take now an equivalence relation, ∼, on the set of vertices
of TH and consider the quotient I-labelled graph (TH/∼, (ρH)∼); this is locally
surjective but not necessarily an immersion. It is clear that the subgroup of FI ,
H ′ = (π(TH/∼, u))(ρH)∼, contains (π(TH , u))ρH = H. Now, applying the Folding
Lemma to the locally surjective I-labelled graph (TH/∼, (ρH)∼) (and the uniqueness
in 1.2(c)) we will obtain the I-labelled graph covering associated to H ′, (TH′ , ρH′),
with base point v, the image of u. Thus, the unique I-labelled graph morphism from
(TH , ρH) to (TH′ , ρH′) sending u to v (which exists by the Lifting Lemma and the
fact H ≤ H ′) factors through (TH/∼, (ρH)∼). The following lemma states that this
is the situation for every subgroup H ′ ≤ FI containing H.

1.5 Lemma. Let H ≤ H ′ ≤ FI and let u and v be base points for the correspon-
ding coverings (TH , ρH) and (TH′ , ρH′), respectively. The unique I-labelled graph
morphism f : (TH , ρH) → (TH′ , ρH′) sending u to v factors through (TH/∼, (ρH)∼),
for some equivalence relation ∼ on the set V TH .

Proof. Let ∼ denote the equivalence relation on V TH such that x ∼ y if and only
if xf = yf . Consider the quotient I-labelled graph (TH/∼, (ρH)∼) (which is locally
surjective) and apply the Folding Lemma to get a new I-labelled graph covering
(Y, σ), and an I-labelled graph morphism κ : (TH/∼, (ρH)∼) → (Y, σ). Note that f
and κ are both coverings.

Suppose now that e1 and e2 are two edges in TH/∼ such that ιeε
1 = ιeε

2 and
e1(ρH)∼ = e2(ρH)∼ for some ε = ±1. In TH we have two edges, e1, e2 ∈ ETH , with
(ιeε

1)f = (ιeε
2)f and with the same label. But this implies e1f = e2f and so, in

TH/∼, τeε
1 = τeε

2. This argument shows that κ collapses together only edges with
the same initial vertex and the same terminal vertex. Consequently, V (TH/∼) = V Y
and κ is one to one on vertices.

Let p ∈ π(Y, uκ) be a closed path at uκ and let p̃ be its lifting to TH with
initial vertex u. We have τ p̃ = u, that is, (τ p̃)f = uf = v. In other words, p̃f is
a closed path in TH′ based at v and satisfying (p̃f)ρH′ = p̃ρH = pσ. This shows
that (π(Y, uκ))σ ≤ (π(TH′ , v))ρH′ = H ′. Similarly, if q ∈ π(TH′ , v) is a closed path
at v, let q̃ be its lifting to TH with initial vertex u; then q̃κ is a closed path at uκ
satisfying (q̃κ)σ = q̃ρH = qρH′ . Thus, (π(Y, uκ))σ = H ′. Now, using twice the



uniqueness in 1.2(c), (Y, σ) and (TH′ , ρH′) are isomorphic and f = κg where g is
an I-labelled graph isomorphism g : (Y, σ) → (TH′ , ρH′) sending uκ to v. 2

1.6 Definition. Let H ≤ FI . Consider the corresponding I-labelled graph
covering (TH , ρH) with base point u. Restricting ρH to the core of TH , we have the
I-labelled graph immersion (XH , ρH) where V XH contains the distinguished vertex
û. We have

(π(XH , û))ρH = (π(TH , û))ρH = ((π(TH , u))ρH)x(H,u) = Hx(H,u),

where x(H, u) = pρH ∈ FI , and p is the unique reduced path from u to û in
TH −EXH . Note that if the initial base point u belongs to the core then û = u and
x(H, u) = 1.

In this situation, given an equivalence relation ∼ on the vertex set of the core
graph XH , we can consider the quotient graph (XH/∼, (ρH)∼), and the subgroup
H∼ = (π(XH/∼, û))(ρH)∼ of FI which clearly contains Hx(H,u). We write

O(H; FI) = {Hx(H,u)−1

∼ | ∼ eq. rel. on V XH},

and call this set the fringe of H with respect to FI . Observe that this set does not
depend on the base point u. In fact, if v is another base point of (TH , ρH) then,
by 1.2(b), there exist an I-labelled graph isomorphism f : (TH , ρH) → (TH , ρH)
sending u to v, and so sending û to v̂. Furthermore, x(H, u) = x(H, v) and f
restricts to an I-labelled graph isomorphism (XH , ρH) → (XH , ρH). And this
restriction gives us a permutation, ∼→∼f , of the set of equivalence relations on
V XH such that (π(XH/ ∼, û))(ρH)∼ = (π(XH/ ∼f, v̂))(ρH)∼f .

Note that O(H; FI) contains H and a free factor of FI , corresponding to equality
and the trivial equivalence relation on V XH , respectively. Note also that O(H; FI)
is finite when XH is finite, that is, when H is finitely generated. 2

The finitely generated case of the following theorem is essentially due to Takahasi
(see Theorem 2 of [8]). The result will be proved here using the graph-theoretic
tecniques developed above, and generalizing the construction in Definition 3 of [9].

1.7 Theorem. (Takahasi) Let I be a set and let H ≤ FI . For every K ≤ FI

containing H there exists H ′ ∈ O(H; FI) which is a free factor of K, i.e. such that
H ≤ H ′ ≤ K = H ′ ∗ L for some L ≤ FI .

Proof. Consider the I-labelled graph covering (TH , ρH) with base point u; we
have (π(TH , û))ρH = Hx(H,u) ≤ Kx(H,u). Consider also the I-labelled graph cove-
ring (TKx(H,u) , ρKx(H,u)) with base point v chosen in such a way that κ is the lifting
of ρH sending û to v, where : TH → TH/∼ and κ : TH/∼→ TKx(H,u) are as in
Lemma 1.5, for some equivalence relation ∼ on the vertex set V TH .

Now restrict ∼ to V XH (again denoted ∼) and consider the quotient I-labelled
graph (XH/∼, (ρH)∼). Clearly the group H ′ = H

x(H,u)−1

∼ is an element of O(H; FI),
where H∼ = (π(XH/∼, û))(ρH)∼. Moreover, XH/∼ is a subgraph of TH/∼. So H∼
is a free factor of (π(TH/∼, û))(ρH)∼ = (π(TKx(H,u) , v))ρKx(H,u) = Kx(H,u). Thus,



Hx(H,u) ≤ H∼ ≤ Kx(H,u) = H∼∗Lx(H,u) for some L ≤ FI . Conjugating by x(H, u)−1

we get H ≤ H ′ ≤ K = H ′ ∗ L which completes the proof. 2

The fringe of a subgroup H ≤ FI contains enought information to decide weather
H itself has or has not some properties. As examples, we can state the following
two corollaries which make use of concepts from [3] and [9], respectively.

1.8 Corollary. Let H ≤ FI . Then, H is compressed if and only if r(H) ≤
r(H ′) for every H ′ ∈ O(H;FI). 2

1.9 Corollary. Let H ≤ FI . Then, H is contained in a proper retract of FI

if and only if H ′ is a proper retract of FI , for some H ′ ∈ O(H; FI). 2

2. Maximal rank fixed subgroups

Throughout this section, let I = {a1, · · · , an}, n ≥ 1, and let Fn (resp. Rn)
denote FI (resp. RI).

2.1 Definitions. A maximal rank fixed subgroup of Fn is a subgroup H of Fn

of rank n which is of the form H = Fixφ for some φ ∈ Aut(Fn); that n is the largest
possible rank was proved by Bestvina-Handel [1].

For a subgroup H ≤ Fn, we define the abelian rank of H with respect to Fn,
denoted rab(H;Fn), to be the rank of the free abelian group HF ′

n/F ′
n, that is, the

rank as an abelian group of the image of H under the abelianization Fn → F ab
n . 2

If H = Fixφ ≤ Fn is a maximal rank fixed subgroup, Collins-Turner [2] showed
that there exist a free basis {x1, · · · , xn} for Fn, and an integer 1 ≤ r ≤ n such
that Fixφ is freely generated by {x1, · · · , xr, xr+1wr+1x

−1
r+1, · · · , xnwnx−1

n } where,
for i = r + 1, · · · , n,

wi ∈ 〈x1, · · · , xr, xr+1wr+1x
−1
r+1, · · · , xi−1wi−1x

−1
i−1〉

= Fix φ ∩ 〈x1, · · · , xi−1〉
is not a proper power. Note that if r = n then H = Fn and φ is the identity.

For a given maximal rank fixed subgroup H ≤ Fn, the above expression need
not be unique, but the number r is uniquely determined by H since it is the abelian
rank of H with respect to Fn; in fact, HF ′

n/F ′
n is the abelian subgroup of F ab

n freely
generated by {x1F

′
n, · · · , xrF

′
n}.

The main result in this section is that a strictly ascending chain of such subgroups
in Fn has length at most n. This is an obvious consequence of the following theorem.

2.2 Theorem. If H < K ≤ Fn with H a maximal rank fixed subgroup then
either r(H) < r(K) or rab(H;Fn) < rab(K;Fn).

Proof. We may assume that xi = ai, i = 1, · · · , n is the basis of Fn in which
H has an expression in the above form given by Collins-Turner. The core XH of
(TH , ρH) with base point u = û is depicted in Fig. 1 with each edge and circle



FIG. 1

labelled with its I-label. Let E′ = {e ∈ EXH | ιe = u 6= τe}; for i = r + 1, · · · , n,
denote by ei the edge in E′ with label ai. Observe that, since wi ∈ 〈a1, · · · , ai−1〉,
none of the edges in the component of XH −E′ containing τei has label ai.

Clearly, by Theorem 1.7, we may restrict our atention to the case K ∈ O(H; Fn),
that is, K = H∼ for some equivalence relation ∼ in V XH .

Consider first the case where there exist two vertices v, w in two different com-
ponents of XH − E′ such that v ∼ w. Then there exist i ∈ {r + 1, · · · , n} and
a closed path in XH/∼ based at u which crosses no edge twice, and which crosses
exactly one edge labelled ai. This closed path determines an element in KF ′

n/F ′
n

not contained in HF ′
n/F ′

n. Thus, 〈a1F
′
n, · · · , arF

′
n〉 = HF ′

n/F ′
n < KF ′

n/F ′
n and so,

rab(H;Fn) < rab(K;Fn).

This leaves the case where v ∼ w implies that v and w belong to the same com-
ponent of XH −E′. Here the quotient (XH)/∼, and the I-labelled graph immersion
obtained from it by applying the Folding Lemma, are both I-labelled graphs formed
by taking XH , and, for each i = r + 1, · · · , n, taking the component of XH − E′

containing τei, and either leaving it unchanged, or replacing it with an I-labelled
graph Xi such that 〈wi〉 < π(Xi, τei), so Xi has rank at least two since wi is not
a proper power. Consequently, either H = K or r(H) < r(K). This completes the
proof. 2

2.3 Theorem. Among the strictly ascending chains of maximal rank fixed
subgroups of Fn, the maximum length is exactly n.

Proof. It follows from Theorem 2.2 that any strictly ascending chain of maximal
rank fixed subgroups of Fn has length at most n. It is straightforward to construct
a chain of length n using the above Collins-Turner description. 2

2.4 Remark Ted Turner has pointed out to me that the poof of Theorem 2.2
does not use the fact wi ∈ Fixφ. Thus, Theorems 2.2 and 2.3 extend to the (rank
n) subgroups of Fn of the form 〈x1, · · · , xr, xr+1wr+1x

−1
r+1, · · · , xnwnx−1

n 〉 for some
free basis {x1, · · · , xn} of Fn and elements wi ∈ 〈x1, · · · , xi−1〉, i = r + 1, · · · , n,



which are not proper powers. It is not difficult to show that not all subgroups of
this form are maximal rank fixed subgroups of Fn. 2

3. The rank two case

The main result of this section, Theorem 3.4, is that, in the rank two case, if the
intersection of an arbitrary family of maximal rank fixed subgroups has maximal
rank (that is, two) then it is again a maximal rank fixed subgroup. Theorem 2.3
for the special case of rank two states that if H, K are two different maximal rank
fixed subgroups and H < K, then K is the whole group. These two facts will allow
us to deduce certain consequences for the rank two case.

Throughout this section, let I = {a, b} and let F2 (resp. R2) denote FI (resp.
RI).

3.1 Notation. Let (X, ρ) and (Y, σ) be two finite I-labeled graphs.

A branch point of X is a vertex in X with valence greater than two. An arc in
X is a reduced path eε1

1 · · · eεn
n such that ιeε1

1 and τeεn
n are branch points of X while

ιeεi
i are valence two vertices, for i = 2, · · · , n. A b-arc in X is an arc with at least

one of the ei labelled b. An a-arc in X is an arc which is not a b-arc, that is, with
all the edges labelled a.

Let f : (X, ρ) → (Y, σ) be an I-labelled graph immersion. Here f carries branch
points of X to branch points of Y . Also f carries an arc, p, in X to a reduced
path in Y which decomposes in a unique way as a reduced product of arcs in Y ,
pf = p1 · · · pm; in this situation we say that each pi and p−1

i occur in pf (and thus
in p−1f). Clearly p is a b-arc if and only if one of the arcs occuring in pf is a
b-arc. Let p (resp. q) be an arc in X (resp. Y ). We denote by op(q) the number
of occurences of q or q−1 in the above reduced expression for pf . Let o(q) denote
1
2

∑
p op(q), where the sum is over the set of all the arcs p in X. Thus opε(qδ) is a

nonnegative integer independent of ε, δ = ±1, and is positive if and only if q occurs
in pf . Further, o(q) is the total number of times that q and q−1 occur in the image
of an arc in X, up to orientation. 2

Let H = 〈a, bab−1〉 < F2 and let K ≤ F2 with r(K) = 2. The immersions
ρH : XH → R2 and ρK : XK → R2 have a pullback, which we will denote by
(σH , σK) : W → XH × XK ; both σH and σK are immersions. See [6] for the
construction and basic properties. Let σ denote the diagonal map σHρH = σKρK .

Observe that the I-labelled graph immersion (XH , ρH) is that depicted in Fig. 2
where each edge is labelled with its I-label. Note that the base point u of (TH , ρH)
belongs to XH and let v denote the other vertex of XH . The rank two core graph
XK has one of the three topology types depicted in Fig. 3. In Fig. 3(c), if the two
branch points have links with labels {a, a−1, b} and {a, a−1, b−1}, let x denote the
former branch point, and let y denote the latter branch point; in all other cases, let
x denote one of the branch points, and if there is another branch point, let y denote



FIG. 2

it.

3.2 Lemma. In the above situation, if one of the components of W has rank
two, and W0 is its core, then one of the following holds:

(a) σK : W0 → XK is an I-labelled graph isomorphism,

(b) (u, x) ∈ V W0 and for some h ∈ H and n ≥ 1, (π(XK , x))ρK = 〈an, hb〉 and
(π(W0, (u, x)))σ = 〈an, hbanb−1h−1〉.

Proof. In the case where XK has the topology type of Fig. 3(a), the two branch
points of W are (u, x) and (v, x), and they belong to W0, and have valence three in
W0.

In the case where XK has the topology type of Fig. 3(b) or 3(c), the only possible
branch points of W are (u, x), (v, x), (u, y) and (v, y). But if both (u, x) and (v, x)
occur, then (lk(u))ρH = (lk(u, x))σ = (lk(x))ρK = (lk(v, x))σ = (lk(v))ρH , which
is a contradiction. Thus, at most one of (u, x) and (v, x) has valence three. Now
r(W0) = 2 implies that exactly one of (u, x) and (v, x) belongs to W0 and has
valence three in W0. A similar argument holds with y in place of x. Furthermore,
W has a unique rank two component and its core is W0, and has the topology type
of Fig. 3(b) or 3(c).

There is exactly one edge in XH labelled b, so the graph morphism σK is injective
on b-labelled edges. The following is another way of saying the same fact and it is
the fundamental point of the proof:

(1) every arc q of XK with o(q) ≥ 2 is an a-arc.

Let us now consider three cases depending on the topology type of XK .

Case 1: XK has the topology type of Fig. 3(a). Here W0 has exactly three
distinct arcs, up to orientation, and XK has exactly two. So, by (1), one of the two
arcs in XK is an a-arc. Moreover, one of the arcs is a b-arc whose first and last edges
have label b. Let q denote the b-arc with first (and last) edge labelled b (and not
b−1). Then (π(XK , x))ρK = 〈an, k〉, where n ≥ 1 and k = qρK ∈ F2.



FIG. 3

But, by the pullback construction, there exist two closed a-arcs of length n in W
with initial (and terminal) vertices (u, x) and (v, x); furthermore, they lie in W0.
To complete the description of W0, we add a b-arc, denoted p, from (u, x) to (v, x),
which is mapped under σK to q, and so has label k. Thus, (u, x) ∈ V W0 and
(π(W0, (u, x)))σ = 〈an, kank−1〉. Finally, by considering the image of p under σH ,
we see that k = hb for some h ∈ H. Thus, (b) holds.

Case 2: XK has the topology type of Fig. 3(b). Let q1 denote the unique non-
closed arc in XK joining x to y, and let q2 and q3 denote the two closed arcs in XK

with clockwise orientation, based at x and y respectively. Let lk(x) = {e1, e2, e3} ⊂
(EXK)±1 and assume that e1 is the first term of q1.

It is clear that if W0 has the topology type of Fig. 3(c) then o(q1) ≥ 3, o(q2) ≥ 2
and o(q3) ≥ 2 so, by (1), q1, q2 and q3 are a-arcs, which is a contradiction. Thus
W0 has the topology type of Fig. 3(b). Its two branch points are (wx, x) and
(wy, y) where wx, wy ∈ {u, v}. Let p1 denote the arc in W0 joining (wx, x) to
(wy, y), and let e′1 denote the first term of p1. Let p2 be a closed arc in W0 at
(wx, x), and let e′2 denote the first term of p2. Let e′3 denote the first term of p−1

2 ,
so lk(wx, x) = {e′1, e′2, e′3}. If e′1σK 6= e1 then o(q1) ≥ 2 and o(q2) ≥ 2 which
contradicts the fact that q1 and q2 cannot both be a-arcs. Thus, e′1σK = e1. A
similar result holds, with y in place of x. Now qi occurs in piσK , i = 1, 2, 3. If q2

or q3 occur in p1σK then o(q1) ≥ 3, o(q2) ≥ 2 and o(q3) ≥ 2 which is impossible. So
p1σK = q1. Now suppose that p2σK = qε

2 · w for some ε = ±1 and some nontrivial
path w. Then o(q2) ≥ 2, so q2 is an a-arc and there must exist a closed a-arc in W0

with the same length as q2 and based at the branch point (wx, x) which contradicts
the non-triviality of w. Thus p2σK = q±1

2 , and similarly p3σK = q±1
3 . This completes

the proof that (a) holds.

Case 3: XK has the topology type of Fig. 3(c). Denote by q1, q2 and q3 the
three arcs in XK joining x to y. It is easy to see that if at least two of them are
b-arcs then W0 has the topology type of Fig. 3(c), and (a) holds. So we may assume
that, q1 and q2 are a-arcs and q3 is a b-arc. There exist positive integers r, s such
that q1ρK = ar and q2ρK = a−s. Thus, in W there are two paths joining (u, x)
to (u, y) whose last coordinates are respectively q1 and q2; and similarly with v in
place of u. But r(W0) = 2, so W also contains an arc, p3, whose last coordinate
is q3, and joining (u, x) to (u, y), or (v, x) to (v, y), or (u, x) to (v, y) (but not



(v, x) to (u, y), by the choice of x and y). In the first two cases, (a) holds. It
remains to consider the third case. Let n = r + s, and k = q3ρK = p3σ ∈ F2.
Consider the image of p3 under σH , and observe that k = h′b for some h′ ∈ H.
Now, (u, x) ∈ V W0, (π(XK , x))ρK = 〈an, kas〉 = 〈an, hb〉 and (π(W0, (u, x)))σ =
〈an, kank−1〉 = 〈an, hbanb−1h−1〉, where h = h′(basb−1) ∈ H. Thus (b) holds in
this case. 2

3.3 Theorem. Let F2 be the free group on {a,b}, and let H = 〈a, bab−1〉. If K
is a subgroup of F2 with r(K) = r(H ∩K) = 2, then one of the following holds:

(a) K ⊆ H, so H ∩K = K;

(b) K = 〈an, h1b〉h2, for some elements h1, h2 ∈ H and n ≥ 1, so H ∩ K =
〈an, h1ba

nb−1h−1
1 〉h2.

Proof. Consider the I-labelled graph coverings (TH , ρH) and (TK , ρK) with
base points u and w, respectively. Note that the base point u of (TH , ρH) belongs
to XH (and so, û = u), but w does not necessarily belong to XK . We know that the
fundamental group at (u, w) of the pullback of these two coverings is (isomorphic to)
H ∩K. So, this pullback has a component of rank two. The core of this component
coincides with the core of the unique rank two component of the pullback of the two
immersions ρH : XH → R2 and ρK : XK → R2; that is, it coincides with W0 using
the above notation. So Lemma 3.2 applies.

Suppose first that (a) of Lemma 3.2 holds. There exists a vertex in W0 of the
form (u, z), for some z ∈ V XK . We have H ∩ (π(XK , z))ρK = (π(XH , u))ρH ∩
(π(XK , z))ρK = (π(W0, (u, z)))σ = (π(XK , z))ρK . We also have (π(XK , z))ρK =
(π(XK , w))pρK = Kg, where p is an arbitrary path in TK from w to z and g =
pρK ∈ F2. So H ∩Kg = Kg, that is, Kg ≤ H.

Suppose next that (b) of Lemma 3.2 holds. Choose an arbitrary path p in TK

from w to x and let g = pρK ∈ F2. We have Kg = (π(XK , x))ρK = 〈an, hb〉 and
H ∩Kg = (π(W0, (u, x)))σ = 〈an, hbanb−1h−1〉, for some h ∈ H and n ≥ 1.

In summary, there exists g ∈ F2 such that one of the following holds:

(a′) Kg ≤ H and H ∩Kg = Kg;

(b′) Kg = 〈an, hb〉 and H ∩Kg = 〈an, hbanb−1h−1〉 for some h ∈ H and n ≥ 1.

Now r(H ∩K) = r(H ∩Kg) = 2. But H is the fixed subgroup of the automorp-
hism of F2 given by a 7→ a, b 7→ ba so, by Theorem IV.5.5 of [3], g and 1 belong
to the same double coset in K\F/H. That is, g = kh−1

2 for some k ∈ K and some
h2 ∈ H. Thus Kg = Kh−1

2 , H ∩Kg = H ∩Kh−1
2 = (H ∩K)h−1

2 . Now, taking h1 = h,
the theorem is proved. 2

Using Theorems 2.2 and 3.3 we obtain the main result of this section:

3.4 Theorem. Let F be a free group of rank two, and S a non-empty set of
non-identity endomorphisms of F such that r(FixS) = 2. Then S ⊆ Aut (F ), and
FixS = 〈a, bab−1〉 for some basis {a, b} of F , and FixS = Fixφ for each φ ∈ S.



Proof. Let φ ∈ S, and let H = Fix φ. By the Corollary in [5], r(H) ≤ 2. But
H is non-abelian, since it contains FixS which has rank two. Hence r(H) = 2. By
Corollary 2 of [9], φ is an automorphism. By Theorem A of [2], we can assume that
F = 〈a, b〉 and H = 〈a, bab−1〉.

Hence S ⊆ Aut (F ).

Let ψ ∈ S, and let K = Fixψ. By the foregoing, r(K) = 2. By Theorem IV.5.7
of [3], or Theorem 1 of [7], r(H ∩K) ≤ 2. But H ∩K is not abelian since it contains
Fix S which has rank two. So, r(H ∩K) = 2. Now, by Theorem 3.3, either K ≤ H
or K = 〈an, h1b〉h2 for some h1, h2 ∈ H and n ≥ 1. But in the latter case, we would
have rab(K; F2) = 2, which contradicts Theorem 2.2 applied to K < F ≤ F . Thus,
K ≤ H < F and, by Theorem 2.3, K = H. The result is now clear. 2

3.5 Corollary. Let F be a free group of rank two, and S a subset of End (F ).
If r(FixS) = 2, then S fixes some primitive element of F . 2

There is a simple description of the sets of endomorphisms of a free group of
rank two with fixed group of rank two.

3.6 Proposition. Let S be a subset of End (F2), and let ψ be the automorphism
of F2 given by aψ = a, bψ = ba. Then FixS = 〈a, bab−1〉 if and only if every element
of S is a power of ψ, and some non-identity power of ψ belongs to S.

Proof. We may assume that S is a non-empty set of non-identity endomorphisms
of F2.

Suppose FixS = 〈a, bab−1〉. By Theorem 3.4, S ⊆ Aut (F2), and, for every
φ ∈ S, Fixφ = 〈a, bab−1〉. Now, using Theorem A in [2] (or directly working with
the fact that a and bab−1 are fixed by the non-identity automorphism φ), we obtain
aφ = a and bφ = bar for some r 6= 0. That is, φ = ψr.

The result is now clear. 2

Combining Theorem 3.4 and Proposition 3.6 we have the following.

3.7 Theorem. Let F be a free group of rank two. If G is a subset of End (F )
which is maximal with the property that r(FixG) = 2, then G is an infinite cyclic
group. Hence each subgroup of Aut (F ) with rank two fixed subgroup is either trivial
or infinite cyclic. 2

Observe that the infiniteness of G (which here comes from the fact that ψ is not
periodic) agrees with Theorem 2 of [4].

Let us observe the following.

3.8 Corollary. Let F be a free group of rank two and let H be a proper
maximal rank fixed subgroup of F . Then no non-identity endomorphism of H with
rank two fixed subgroup can be extended to an endomorphism of F .

Proof. Let φ : H → H be an endomorphism with r(Fixφ) = 2 and suppose φ
can be extended to an endomorphism φ̃ of F . Then Fix φ̃∩H = Fixφ has rank two,
so, by Theorem 3.4, Fix φ̃ = H. Thus, φ is the identity. 2



Let us conclude by describing the subgroups of the free group of rank two which
are the fixed subgroups for some set of endomorphisms. As a Corollary, we can
answer a question of G. Levitt in the rank two case.

3.9 Theorem. Let F be a free group of rank two, and let H be a subgroup of F .
The following are equivalent:

(a) H = Fixφ for some φ ∈ Aut (F ),

(b) H = Fixφ for some φ ∈ End (F ),

(c) H = FixS for some S ⊆ End (F ),

(d) H is {1}, or 〈w〉 for some w ∈ F which is not a proper power, or 〈a, bab−1〉
for some basis {a, b} of F , or F ,

(e) H = FixG for some G ⊆ Aut (F ).

Proof. Obviously, (a) implies (b) and (b) implies (c).

Suppose that H = FixS for some S ⊆ End (F ). By Theorem IV.5.7 in [3], H has
rank at most two. If r(H) = 0 then H = {1}. If r(H) = 1 then H = 〈w〉 for some
w ∈ F . But if a power of an element of a free group is fixed by an endomorphism
then the element itself is also fixed. So, w is not a proper power. Finally, if r(H) = 2
then, by Theorem 3.4, H = 〈a, bab−1〉 for some basis {a, b} of F , or H = F . Thus,
(c) implies (d).

The trivial subgroup is the fixed subgroup of an automorphism of F permuting
the two elements of some basis. If w is not a proper power, then 〈w〉 is the fixed
subgroup of (right or left) conjugation by w. If {a, b} is a basis of F , then 〈a, bab−1〉
is the fixed subgroup of the automorphism given by a 7→ a, b 7→ ba. Obviously, F is
the fixed subgroup of the identity. So, (d) implies (a).

Finally, it is obvious that (a) implies (e), and that (e) implies (c). 2

3.10 Corollary. Let F be a free group of rank two, and let S be a subset of
End (F ). Then there exists a finite subset S0 ⊆ S such that FixS0 = FixS.

Proof. Choose φ1 ∈ S. If Fixφ1 = FixS then the result is proven. Otherwise,
choose φ2 ∈ S such that Fix {φ1, φ2} is strictly contained in Fixφ1. By Theorems 3.9
and 2.3 we can repeat this operation at most four times. Thus, there exist S0 ⊆ S
such that FixS0 = FixS and |S0| ≤ 3. 2

4. Comments about rank higher than two.

One might conjecture that Theorem 3.4 extends to higher finite ranks, in the
form that the intersection of maximal rank fixed subgroups in Fn is again a maximal
rank fixed subgroup, where now it is possible for the intersections to be proper, by
Theorem 2.3. Here graphical arguments using coverings and immersions to represent
subgroups of Fn, and pull-backs to control intersections, seem not to be sufficient to



prove such a result. Any kind of argument distinguishing topology types of graphs
with rank n and their pull-backs leads to a list of possibilities which grows very
quickly with n. This growth makes it difficult to analize the general situation for
n ≥ 3.

For example, in the case where F3 = 〈a, b, c | 〉, and H = 〈a, b, cwc−1〉, w ∈
〈a, b〉, we have the following three types of subgroups K of F3 with r(K) = r(H ∩
K) = 3 (among possibly others):

• K ≤ H, so H ∩K = K,

• K = 〈wm, h1, h2c〉h3 , h1, h2, h3 ∈ H, so H ∩K = 〈wm, h1, h2cwc−1h−1
2 〉h3

• K = 〈u1, u2, h1c〉h2 , h1, h2 ∈ H, u1, u2 ∈ 〈a, b〉 with 〈u1, u2〉 having rank two,
wm ∈ 〈u1, u2〉, so H ∩K = 〈u1, u2, h1cw

mc−1h−1
1 〉h2 .

And in the case where F3 = 〈a, b, c | 〉, and H = 〈a, bab−1, cwc−1〉, w ∈
〈a, bab−1〉, observe the following two examples:

• K = 〈u1, u2, h1c〉h2 , h1, h2 ∈ H, u1, u2 ∈ 〈a, bab−1〉 with 〈u1, u2〉 having rank
two, wm ∈ 〈u1, u2〉, so H ∩K = 〈u1, u2, h1cw

mc−1h−1
1 〉h2 .

• K = 〈an, h1b, (h2c)h3〉h4 , h1, h2, h3, h4 ∈ H, (wm)h3 ∈ 〈an, h1b〉, so H ∩K =
〈an, h1ba

nb−1h−1
1 , (h2cw

mc−1h−1
2 )h3〉h4 .
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