ON FIXED SUBGROUPS OF MAXIMAL RANK

Enric Ventura
Departament de Matemàtica Aplicada III, Universitat Politècnica de Catalunya, Manresa (Barcelona), Spain.
e-mail: ventura@dumbo.upc.es

Als meus fills, Mireia i Pau

Resum

We show that, in the free group F of rank n, n is the maximal length of strictly ascending chains of maximal rank fixed subgroups, that is, rank n subgroups of the form Fix ϕ for some $\phi \in \operatorname{Aut}(F)$. We further show that, in the rank two case, if the intersection of an arbitrary family of proper maximal rank fixed subgroups has rank two then all those subgroups are equal. In particular, every $G \leq \operatorname{Aut}(F)$ with $r(\operatorname{Fix} G)=2$ is either trivial or infinite cyclic.

1. The fringe of a subgroup

Throughout this section let I be an arbitrary non-empty set, and let $F_{I}=\langle I \mid\rangle$ denote the free group on I.
1.1 Definitions. A graph $X=(V, E, \iota, \tau)$ consists of two disjoint sets V, E (usually denoted $V X$ and $E X$) and two maps $\iota, \tau: E X \rightarrow V X$. The elements of $V X$ and $E X$ are called the vertices and edges of X, respectively. The maps ι and τ are the incident maps of X. We consider ι and τ extended to the disjoint union $E X \vee(E X)^{-1}$ by setting $\iota e^{-1}=\tau e$ and $\tau e^{-1}=\iota e, e \in E X$.

The basic example is the I-bouquet, $R_{I}=(\{*\}, I, \iota, \tau)$ where ι and τ are each (necessarily) the constant map.

The concepts of path, trivial path, fundamental group at a vertex, connected graph, connected components of a graph, subgraph, graph morphism and graph isomorphism are the standard ones.

By the link of a vertex $v \in V X$, we mean $\operatorname{lk}(v)=\left\{e \in E X \vee(E X)^{-1} \mid \iota e=v\right\}$. The valency of v is $|1 \mathrm{k}(v)|$. We say that X is a finite core graph if X is finite (i.e., $V X$ and $E X$ are both finite) and X has no vertices of valency 0 or 1 . The core of a graph X, denoted core (X), is the union of the finite core subgraphs of X. If $\operatorname{core}(X)=X$ then we say that X is a core graph. A forest is a graph whose core is empty.

A tree is a connected forest. It is easy to see that, given a vertex v of X not in a tree component of X, the component of $X-E(\operatorname{core}(X))$ containing v contains exactly one vertex belonging to core (X); this vertex is called the root of v, denoted \hat{v}; note that $\hat{v}=v$ if and only if $v \in \operatorname{core}(X)$.

Let X be a connected graph and v a vertex of X. The fundamental group of X at v, denoted $\pi(X, v)$, is a free group and its isomorphism class (i.e. its rank) does not depend on v. This rank (possibly infinite) is the rank of X, denoted $r(X)$. For example, $\pi\left(R_{I}, *\right)=F_{I}$ and $r\left(R_{I}\right)=|I|$. It is easy to see that $r(X)=r(\operatorname{core}(X))$; in fact, for $v \in \operatorname{core}(X), \pi(X, v)=\pi(\operatorname{core}(X), v)$. It is well known that if Y is a subgraph of X and $u \in V Y \subseteq V X$ then $\pi(Y, u)$ is a free factor of $\pi(X, u)$.

Let $f: X \rightarrow Y$ be a graph morphism and $v \in V X$. We can define the group morphism $\pi(X, v) \rightarrow \pi(Y, v f), p \mapsto p f$, and the map $\operatorname{lk}(v) \rightarrow \operatorname{lk}(v f), e \mapsto e f$, $e^{-1} \mapsto(e f)^{-1}, e \in E X$, both denoted also by f. As in [6], when the latter map is injective (resp. surjective, resp. bijective) for every $v \in V X$, we say that f is an immersion (resp. locally surjective, resp. a covering).

Let X be a graph and let \sim be an equivalence relation on the set of vertices $V X$. By the quotient graph X / \sim we mean the graph $((V X) / \sim, E X, \bar{\iota}, \bar{\tau})$ where the incident functions are those of X composed with the projection onto $(V X) / \sim$. Let ${ }^{-}: X \rightarrow X / \sim$ be the natural projection, a graph morphism. For example, if \sim is the trivial equivalence relation on $V X$ then $X / \sim=R_{E X}$. Suppose now that $f: X \rightarrow Y$ is a graph morphism and \sim is an equivalence relation on $V X$ such that $u \sim v$ implies $u f=v f$. In this case, f factors through the natural graph morphism $f_{\sim}: X / \sim \rightarrow Y$, that is, $f={ }^{-} f_{\sim}$. Furthermore, if f is locally surjective then so is f_{\sim}.
1.2 Covering theory. Covering theory for graphs is a special case of the topological theory of covering spaces. To fix notation we collect together some wellknown results (see, for example, $[6]$) that we will use later.
(a) (Path-lifting) Let $f: X \rightarrow Y$ be a covering. For any vertex $u \in V X$ and any path p in Y with $\iota p=u f$ there exists a unique path \tilde{p} in X such that $\iota \tilde{p}=u$ and $\tilde{p} f=p$. Such a \tilde{p} is called the lifting of p with initial vertex u.
(b) (Lifting Lemma) Let $f: Y \rightarrow Z$ be a covering, let $g: X \rightarrow Z$ be a graph morphism with X a connected graph, and let $u \in V X$ and $v \in V Y$ such that $u g=v f$. There exists a graph morphism $\tilde{g}: X \rightarrow Y$ satisfying $g=\tilde{g} f$ and $u \tilde{g}=v$ if and only if $(\pi(X, u)) g \subseteq(\pi(Y, v)) f$; in this case, \tilde{g} is unique, and will be called the lifting of g sending u to v. Furthermore, if g is an immersion, or is locally surjective, or is a covering, then so is \tilde{g}.
(c) (Existence of coverings) Let Y be a connected graph, $v \in V Y$ and $H \leq \pi(Y, v)$. There exists a connected covering, $f: X \rightarrow Y$, and a vertex $u \in V X$ such that $u f=v$ and $(\pi(X, u)) f=H$; moreover, f is unique in the sense that for any such $f^{\prime}: X^{\prime} \rightarrow Y$ and $u^{\prime} \in V X^{\prime}$ there exist a graph isomorphism $g: X \rightarrow X^{\prime}$ satisfying $u g=u^{\prime}$ and $f=g f^{\prime}$.
(d) (π-injectivity) If $f: X \rightarrow Y$ is an immersion then, for any vertex $v \in V X$, the corresponding group morphism $\pi(X, v) \rightarrow \pi(Y, v f)$ is injective.

The Folding Lemma due to J. Stallings (see 3.3 in [6]) folds pairs of edges one by one, so works for finite graphs. We need here an extended version suitable for arbitrary graphs.
1.3 Folding Lemma. Let $f: X \rightarrow Y$ be a graph morphism. There exists a graph X^{\prime}, an immersion $f^{\prime}: X^{\prime} \rightarrow Y$ and a graph morphism $\kappa: X \rightarrow X^{\prime}$ such that $f=\kappa f^{\prime}$ and, for every vertex $u \in V X,(\pi(X, u)) f=\left(\pi\left(X^{\prime}, u \kappa\right)\right) f^{\prime}$. Furthermore, if f is locally surjective then so is f^{\prime}.

Proof. Let \sim be the equivalence relation on the set of vertices of X such that $u \sim v$ if and only if there exist a path p in X from u to v such that $p f$ cancels to a trivial path in Y. In particular, if $u \sim v$ then u and v belong to the same component of X, and $u f=v f$.

Consider now the quotient graph X / \sim, and the graph morphisms ${ }^{-}: X \rightarrow X / \sim$ and $f_{\sim}: X / \sim \rightarrow Y$. Let X^{\prime} denote the graph obtained from X / \sim by identifying edges which have the same initial vertex, and the same terminal vertex, and the same image under f_{\sim}; so, $V X^{\prime}=V(X / \sim)=(V X) / \sim$. Let $\kappa^{\prime}: X / \sim \rightarrow X^{\prime}$ and $f^{\prime}: X^{\prime} \rightarrow Y$ be the natural graph morphisms, and let $\kappa={ }^{-} \kappa^{\prime}$.

By construction, it is clear that $f=\kappa f^{\prime}$ and that f^{\prime} is locally surjective if f is. Note that if two edges $e_{1}, e_{2} \in E(X / \sim)$ satisfy $\bar{\iota} e_{1}^{\epsilon}=\bar{\iota} e_{2}^{\epsilon}$ and $e_{1} f_{\sim}=e_{2} f_{\sim}$ for some $\epsilon= \pm 1$, then $\bar{\tau} e_{1}^{\epsilon}=\bar{\tau} e_{2}^{\epsilon}$, so they are identified in X^{\prime}. Thus, f^{\prime} is an immersion. Now consider a vertex $u \in V X$. It is clear that $\left(\pi\left(X^{\prime}, u \kappa\right)\right) f^{\prime}=(\pi(X / \sim, \bar{u})) f_{\sim}$, and that $(\pi(X, u)) f \subseteq(\pi(X / \sim, \bar{u})) f_{\sim}$. Thus, it remains to prove the inclusion $(\pi(X / \sim, \bar{u})) f_{\sim} \subseteq(\pi(X, u)) f$. Let $p=e_{1}^{\epsilon_{1}} \cdots e_{n}^{\epsilon_{n}} \in \pi(X / \sim, \bar{u})$ be a closed path at \bar{u}. The edges $e_{1}, \cdots, e_{n} \in E X$ need not form a path in X but, by definition of \sim, there exist paths in $X, p_{i}, i=0, \cdots, n$, such that $\iota p_{0}=u, \iota p_{i}=\tau e_{i}^{\epsilon_{i}}$ for $i=1, \cdots, n$, $\tau p_{i}=\iota \epsilon_{i+1}^{\epsilon_{i+1}}$ for $i=0, \cdots, n-1, \tau p_{n}=u$, and $p_{i} f$ is trivial for $i=0, \cdots, n$. Now $q=p_{0} e_{1}^{\epsilon_{1}} p_{1} \cdots p_{n-1} e_{n}^{\epsilon_{n}} p_{n} \in \pi(X, u)$ is a path in X closed at u and satisfying $q f=p f_{\sim}$. This completes the proof of the lemma.
1.4 Definitions. In the group F_{I}, we will use the exponential notation to denote right conjugation, that is, $x^{y}=y^{-1} x y, x, y \in F_{I}$.

An I-labelled $\operatorname{graph}(X, \rho)$ is a graph X together with a map $\rho: E X \rightarrow I$. This can be thought of as a graph X with a specified graph morphism $\rho: X \rightarrow R_{I}$. An I-labelled graph morphism (resp. I-labelled graph isomorphism), $f:(X, \rho) \rightarrow(Y, \sigma)$, is a graph morphism (resp. graph isomorphism) between the corresponding graphs, $f: X \rightarrow Y$, respecting the labels, that is, satisfying $\rho=f \sigma$. By an I-labelled
graph immersion, (resp. a locally surjective I-labelled graph, resp. an I-labelled graph covering) we mean an I-labelled graph (X, ρ) such that ρ is an immersion (resp. a locally surjective graph morphism, resp. a covering). Note that when $f:(X, \rho) \rightarrow(Y, \sigma)$ is an I-labelled graph morphism, if ρ is an immersion then so is f; and if ρ and σ are both coverings then so is f.

Applying 1.2 (c) to R_{I}, we can canonically associate to each subgroup $H \leq F_{I}$, a connected I-labelled graph covering; it will be denoted $\left(T_{H}, \rho_{H}\right)$. A vertex $v \in$ $V T_{H}$ as in $1.2(\mathrm{c})$ (not necessarily unique) is called a base point. By construction, $\left(\pi\left(T_{H}, v\right)\right) \rho_{H}=H$. The core of T_{H} will be denoted X_{H}. It is easy to see that $H \leq F_{I}$ is finitely generated if and only if X_{H} is a finite graph.

Let $H \leq F_{I}$. Consider $\left(T_{H}, \rho_{H}\right)$, the corresponding I-labelled graph covering with base point u. Take now an equivalence relation, \sim, on the set of vertices of T_{H} and consider the quotient I-labelled graph $\left(T_{H} / \sim,\left(\rho_{H}\right)_{\sim}\right)$; this is locally surjective but not necessarily an immersion. It is clear that the subgroup of F_{I}, $H^{\prime}=\left(\pi\left(T_{H} / \sim, \bar{u}\right)\right)\left(\rho_{H}\right)_{\sim}$, contains $\left(\pi\left(T_{H}, u\right)\right) \rho_{H}=H$. Now, applying the Folding Lemma to the locally surjective I-labelled graph $\left(T_{H} / \sim,\left(\rho_{H}\right) \sim\right)$ (and the uniqueness in $1.2(\mathrm{c}))$ we will obtain the I-labelled graph covering associated to $H^{\prime},\left(T_{H^{\prime}}, \rho_{H^{\prime}}\right)$, with base point v, the image of \bar{u}. Thus, the unique I-labelled graph morphism from $\left(T_{H}, \rho_{H}\right)$ to $\left(T_{H^{\prime}}, \rho_{H^{\prime}}\right)$ sending u to v (which exists by the Lifting Lemma and the fact $\left.H \leq H^{\prime}\right)$ factors through $\left(T_{H} / \sim,\left(\rho_{H}\right)_{\sim}\right)$. The following lemma states that this is the situation for every subgroup $H^{\prime} \leq F_{I}$ containing H.
1.5 Lemma. Let $H \leq H^{\prime} \leq F_{I}$ and let u and v be base points for the corresponding coverings $\left(T_{H}, \rho_{H}\right)$ and $\left(T_{H^{\prime}}, \rho_{H^{\prime}}\right)$, respectively. The unique I-labelled graph morphism $f:\left(T_{H}, \rho_{H}\right) \rightarrow\left(T_{H^{\prime}}, \rho_{H^{\prime}}\right)$ sending u to v factors through $\left(T_{H} / \sim,\left(\rho_{H}\right) \sim\right)$, for some equivalence relation \sim on the set $V T_{H}$.

Proof. Let \sim denote the equivalence relation on $V T_{H}$ such that $x \sim y$ if and only if $x f=y f$. Consider the quotient I-labelled graph $\left(T_{H} / \sim,\left(\rho_{H}\right) \sim\right)$ (which is locally surjective) and apply the Folding Lemma to get a new I-labelled graph covering (Y, σ), and an I-labelled graph morphism $\kappa:\left(T_{H} / \sim,\left(\rho_{H}\right)_{\sim}\right) \rightarrow(Y, \sigma)$. Note that f and ${ }^{-} \kappa$ are both coverings.

Suppose now that e_{1} and e_{2} are two edges in T_{H} / \sim such that $\bar{\iota} e_{1}^{\epsilon}=\bar{\iota} e_{2}^{\epsilon}$ and $e_{1}\left(\rho_{H}\right)_{\sim}=e_{2}\left(\rho_{H}\right)_{\sim}$ for some $\epsilon= \pm 1$. In T_{H} we have two edges, $e_{1}, e_{2} \in E T_{H}$, with $\left(\iota e_{1}^{\epsilon}\right) f=\left(\iota e_{2}^{\epsilon}\right) f$ and with the same label. But this implies $e_{1} f=e_{2} f$ and so, in $T_{H} / \sim, \bar{\tau} e_{1}^{\epsilon}=\bar{\tau} e_{2}^{\epsilon}$. This argument shows that κ collapses together only edges with the same initial vertex and the same terminal vertex. Consequently, $V\left(T_{H} / \sim\right)=V Y$ and κ is one to one on vertices.

Let $p \in \pi(Y, \bar{u} \kappa)$ be a closed path at $\bar{u} \kappa$ and let \tilde{p} be its lifting to T_{H} with initial vertex u. We have $\overline{\tau \tilde{p}}=\bar{u}$, that is, $(\tau \tilde{p}) f=u f=v$. In other words, $\tilde{p} f$ is a closed path in $T_{H^{\prime}}$ based at v and satisfying $(\tilde{p} f) \rho_{H^{\prime}}=\tilde{p} \rho_{H}=p \sigma$. This shows that $(\pi(Y, \bar{u} \kappa)) \sigma \leq\left(\pi\left(T_{H^{\prime}}, v\right)\right) \rho_{H^{\prime}}=H^{\prime}$. Similarly, if $q \in \pi\left(T_{H^{\prime}}, v\right)$ is a closed path at v, let \tilde{q} be its lifting to T_{H} with initial vertex u; then $\overline{\tilde{q}} \kappa$ is a closed path at $\bar{u} \kappa$ satisfying $(\overline{\tilde{q}} \kappa) \sigma=\tilde{q} \rho_{H}=q \rho_{H^{\prime}}$. Thus, $(\pi(Y, \bar{u} \kappa)) \sigma=H^{\prime}$. Now, using twice the
uniqueness in $1.2(\mathrm{c}),(Y, \sigma)$ and $\left(T_{H^{\prime}}, \rho_{H^{\prime}}\right)$ are isomorphic and $f=-\kappa g$ where g is an I-labelled graph isomorphism $g:(Y, \sigma) \rightarrow\left(T_{H^{\prime}}, \rho_{H^{\prime}}\right)$ sending $\bar{u} \kappa$ to v.
1.6 Definition. Let $H \leq F_{I}$. Consider the corresponding I-labelled graph covering $\left(T_{H}, \rho_{H}\right)$ with base point u. Restricting ρ_{H} to the core of T_{H}, we have the I-labelled graph immersion $\left(X_{H}, \rho_{H}\right)$ where $V X_{H}$ contains the distinguished vertex \hat{u}. We have

$$
\left(\pi\left(X_{H}, \hat{u}\right)\right) \rho_{H}=\left(\pi\left(T_{H}, \hat{u}\right)\right) \rho_{H}=\left(\left(\pi\left(T_{H}, u\right)\right) \rho_{H}\right)^{x(H, u)}=H^{x(H, u)}
$$

where $x(H, u)=p \rho_{H} \in F_{I}$, and p is the unique reduced path from u to \hat{u} in $T_{H}-E X_{H}$. Note that if the initial base point u belongs to the core then $\hat{u}=u$ and $x(H, u)=1$ 。

In this situation, given an equivalence relation \sim on the vertex set of the core graph X_{H}, we can consider the quotient graph $\left(X_{H} / \sim,\left(\rho_{H}\right) \sim\right.$, and the subgroup $H_{\sim}=\left(\pi\left(X_{H} / \sim, \overline{\hat{u}}\right)\right)\left(\rho_{H}\right)_{\sim}$ of F_{I} which clearly contains $H^{x(H, u)}$. We write

$$
\mathcal{O}\left(H ; F_{I}\right)=\left\{H_{\sim}^{x(H, u)^{-1}} \mid \sim \text { eq. rel. on } V X_{H}\right\}
$$

and call this set the fringe of H with respect to F_{I}. Observe that this set does not depend on the base point u. In fact, if v is another base point of $\left(T_{H}, \rho_{H}\right)$ then, by $1.2(\mathrm{~b})$, there exist an I-labelled graph isomorphism $f:\left(T_{H}, \rho_{H}\right) \rightarrow\left(T_{H}, \rho_{H}\right)$ sending u to v, and so sending \hat{u} to \hat{v}. Furthermore, $x(H, u)=x(H, v)$ and f restricts to an I-labelled graph isomorphism $\left(X_{H}, \rho_{H}\right) \rightarrow\left(X_{H}, \rho_{H}\right)$. And this restriction gives us a permutation, $\sim \rightarrow \sim f$, of the set of equivalence relations on $V X_{H}$ such that $\left(\pi\left(X_{H} / \sim, \overline{\hat{u}}\right)\right)\left(\rho_{H}\right)_{\sim}=\left(\pi\left(X_{H} / \sim f, \overline{\hat{v}}\right)\right)\left(\rho_{H}\right)_{\sim f}$.

Note that $\mathcal{O}\left(H ; F_{I}\right)$ contains H and a free factor of F_{I}, corresponding to equality and the trivial equivalence relation on $V X_{H}$, respectively. Note also that $\mathcal{O}\left(H ; F_{I}\right)$ is finite when X_{H} is finite, that is, when H is finitely generated.

The finitely generated case of the following theorem is essentially due to Takahasi (see Theorem 2 of [8]). The result will be proved here using the graph-theoretic tecniques developed above, and generalizing the construction in Definition 3 of [9].
1.7 Theorem. (Takahasi) Let I be a set and let $H \leq F_{I}$. For every $K \leq F_{I}$ containing H there exists $H^{\prime} \in \mathcal{O}\left(H ; F_{I}\right)$ which is a free factor of K, i.e. such that $H \leq H^{\prime} \leq K=H^{\prime} * L$ for some $L \leq F_{I}$.

Proof. Consider the I-labelled graph covering $\left(T_{H}, \rho_{H}\right)$ with base point u; we have $\left(\pi\left(T_{H}, \hat{u}\right)\right) \rho_{H}=H^{x(H, u)} \leq K^{x(H, u)}$. Consider also the I-labelled graph covering $\left(T_{K^{x(H, u)}}, \rho_{K^{x(H, u)}}\right)$ with base point v chosen in such a way that ${ }^{-} \kappa$ is the lifting of ρ_{H} sending \hat{u} to v, where ${ }^{-}: T_{H} \rightarrow T_{H} / \sim$ and $\kappa: T_{H} / \sim \rightarrow T_{K^{x(H, u)}}$ are as in Lemma 1.5, for some equivalence relation \sim on the vertex set $V T_{H}$.

Now restrict \sim to $V X_{H}$ (again denoted \sim) and consider the quotient I-labelled $\operatorname{graph}\left(X_{H} / \sim,\left(\rho_{H}\right)_{\sim}\right)$. Clearly the group $H^{\prime}=H_{\sim}^{x(H, u)^{-1}}$ is an element of $\mathcal{O}\left(H ; F_{I}\right)$, where $H_{\sim}=\left(\pi\left(X_{H} / \sim, \overline{\hat{u}}\right)\right)\left(\rho_{H}\right)_{\sim}$. Moreover, X_{H} / \sim is a subgraph of T_{H} / \sim. So H_{\sim} is a free factor of $\left(\pi\left(T_{H} / \sim, \overline{\hat{u}}\right)\right)\left(\rho_{H}\right)_{\sim}=\left(\pi\left(T_{K^{x(H, u)}}, v\right)\right) \rho_{K^{x(H, u)}}=K^{x(H, u)}$. Thus,
$H^{x(H, u)} \leq H_{\sim} \leq K^{x(H, u)}=H_{\sim} * L^{x(H, u)}$ for some $L \leq F_{I}$. Conjugating by $x(H, u)^{-1}$ we get $H \leq H^{\prime} \leq K=H^{\prime} * L$ which completes the proof.

The fringe of a subgroup $H \leq F_{I}$ contains enought information to decide weather H itself has or has not some properties. As examples, we can state the following two corollaries which make use of concepts from [3] and [9], respectively.
1.8 Corollary. Let $H \leq F_{I}$. Then, H is compressed if and only if $r(H) \leq$ $r\left(H^{\prime}\right)$ for every $H^{\prime} \in \mathcal{O}\left(H ; F_{I}\right)$.
1.9 Corollary. Let $H \leq F_{I}$. Then, H is contained in a proper retract of F_{I} if and only if H^{\prime} is a proper retract of F_{I}, for some $H^{\prime} \in \mathcal{O}\left(H ; F_{I}\right)$.

2. Maximal rank fixed subgroups

Throughout this section, let $I=\left\{a_{1}, \cdots, a_{n}\right\}, n \geq 1$, and let F_{n} (resp. R_{n}) denote $F_{I}\left(\right.$ resp. $\left.R_{I}\right)$.
2.1 Definitions. A maximal rank fixed subgroup of F_{n} is a subgroup H of F_{n} of rank n which is of the form $H=\operatorname{Fix} \phi$ for some $\phi \in \operatorname{Aut}\left(F_{n}\right)$; that n is the largest possible rank was proved by Bestvina-Handel [1].

For a subgroup $H \leq F_{n}$, we define the abelian rank of H with respect to F_{n}, denoted $r^{a b}\left(H ; F_{n}\right)$, to be the rank of the free abelian group $H F_{n}^{\prime} / F_{n}^{\prime}$, that is, the rank as an abelian group of the image of H under the abelianization $F_{n} \rightarrow F_{n}^{a b}$.

If $H=\operatorname{Fix} \phi \leq F_{n}$ is a maximal rank fixed subgroup, Collins-Turner [2] showed that there exist a free basis $\left\{x_{1}, \cdots, x_{n}\right\}$ for F_{n}, and an integer $1 \leq r \leq n$ such that $\operatorname{Fix} \phi$ is freely generated by $\left\{x_{1}, \cdots, x_{r}, x_{r+1} w_{r+1} x_{r+1}^{-1}, \cdots, x_{n} w_{n} x_{n}^{-1}\right\}$ where, for $i=r+1, \cdots, n$,

$$
\begin{aligned}
w_{i} \in & \left\langle x_{1}, \cdots, x_{r}, x_{r+1} w_{r+1} x_{r+1}^{-1}, \cdots, x_{i-1} w_{i-1} x_{i-1}^{-1}\right\rangle \\
& =\operatorname{Fix} \phi \cap\left\langle x_{1}, \cdots, x_{i-1}\right\rangle
\end{aligned}
$$

is not a proper power. Note that if $r=n$ then $H=F_{n}$ and ϕ is the identity.
For a given maximal rank fixed subgroup $H \leq F_{n}$, the above expression need not be unique, but the number r is uniquely determined by H since it is the abelian rank of H with respect to F_{n}; in fact, $H F_{n}^{\prime} / F_{n}^{\prime}$ is the abelian subgroup of $F_{n}^{a b}$ freely generated by $\left\{x_{1} F_{n}^{\prime}, \cdots, x_{r} F_{n}^{\prime}\right\}$.

The main result in this section is that a strictly ascending chain of such subgroups in F_{n} has length at most n. This is an obvious consequence of the following theorem.
2.2 Theorem. If $H<K \leq F_{n}$ with H a maximal rank fixed subgroup then either $r(H)<r(K)$ or $r^{a b}\left(H ; F_{n}\right)<r^{a b}\left(K ; F_{n}\right)$.

Proof. We may assume that $x_{i}=a_{i}, i=1, \cdots, n$ is the basis of F_{n} in which H has an expression in the above form given by Collins-Turner. The core X_{H} of $\left(T_{H}, \rho_{H}\right)$ with base point $u=\hat{u}$ is depicted in Fig. 1 with each edge and circle

$$
\text { FIG. } 1
$$

labelled with its I-label. Let $E^{\prime}=\left\{e \in E X_{H} \mid \iota e=u \neq \tau e\right\}$; for $i=r+1, \cdots, n$, denote by e_{i} the edge in E^{\prime} with label a_{i}. Observe that, since $w_{i} \in\left\langle a_{1}, \cdots, a_{i-1}\right\rangle$, none of the edges in the component of $X_{H}-E^{\prime}$ containing τe_{i} has label a_{i}.

Clearly, by Theorem 1.7, we may restrict our atention to the case $K \in \mathcal{O}\left(H ; F_{n}\right)$, that is, $K=H_{\sim}$ for some equivalence relation \sim in $V X_{H}$.

Consider first the case where there exist two vertices v, w in two different components of $X_{H}-E^{\prime}$ such that $v \sim w$. Then there exist $i \in\{r+1, \cdots, n\}$ and a closed path in X_{H} / \sim based at \bar{u} which crosses no edge twice, and which crosses exactly one edge labelled a_{i}. This closed path determines an element in $K F_{n}^{\prime} / F_{n}^{\prime}$ not contained in $H F_{n}^{\prime} / F_{n}^{\prime}$. Thus, $\left\langle a_{1} F_{n}^{\prime}, \cdots, a_{r} F_{n}^{\prime}\right\rangle=H F_{n}^{\prime} / F_{n}^{\prime}<K F_{n}^{\prime} / F_{n}^{\prime}$ and so, $r^{a b}\left(H ; F_{n}\right)<r^{a b}\left(K ; F_{n}\right)$.

This leaves the case where $v \sim w$ implies that v and w belong to the same component of $X_{H}-E^{\prime}$. Here the quotient $\left(X_{H}\right) / \sim$, and the I-labelled graph immersion obtained from it by applying the Folding Lemma, are both I-labelled graphs formed by taking X_{H}, and, for each $i=r+1, \cdots, n$, taking the component of $X_{H}-E^{\prime}$ containing τe_{i}, and either leaving it unchanged, or replacing it with an I-labelled graph X_{i} such that $\left\langle w_{i}\right\rangle<\pi\left(X_{i}, \tau e_{i}\right)$, so X_{i} has rank at least two since w_{i} is not a proper power. Consequently, either $H=K$ or $r(H)<r(K)$. This completes the proof.
2.3 ThEOREM. Among the strictly ascending chains of maximal rank fixed subgroups of F_{n}, the maximum length is exactly n.

Proof. It follows from Theorem 2.2 that any strictly ascending chain of maximal rank fixed subgroups of F_{n} has length at most n. It is straightforward to construct a chain of length n using the above Collins-Turner description.
2.4 Remark Ted Turner has pointed out to me that the poof of Theorem 2.2 does not use the fact $w_{i} \in \operatorname{Fix} \phi$. Thus, Theorems 2.2 and 2.3 extend to the (rank n) subgroups of F_{n} of the form $\left\langle x_{1}, \cdots, x_{r}, x_{r+1} w_{r+1} x_{r+1}^{-1}, \cdots, x_{n} w_{n} x_{n}^{-1}\right\rangle$ for some free basis $\left\{x_{1}, \cdots, x_{n}\right\}$ of F_{n} and elements $w_{i} \in\left\langle x_{1}, \cdots, x_{i-1}\right\rangle, i=r+1, \cdots, n$,
which are not proper powers. It is not difficult to show that not all subgroups of this form are maximal rank fixed subgroups of F_{n}.

3. The rank two case

The main result of this section, Theorem 3.4, is that, in the rank two case, if the intersection of an arbitrary family of maximal rank fixed subgroups has maximal rank (that is, two) then it is again a maximal rank fixed subgroup. Theorem 2.3 for the special case of rank two states that if H, K are two different maximal rank fixed subgroups and $H<K$, then K is the whole group. These two facts will allow us to deduce certain consequences for the rank two case.

Throughout this section, let $I=\{a, b\}$ and let F_{2} (resp. R_{2}) denote F_{I} (resp. R_{I}.
3.1 Notation. Let (X, ρ) and (Y, σ) be two finite I-labeled graphs.

A branch point of X is a vertex in X with valence greater than two. An arc in X is a reduced path $e_{1}^{\epsilon_{1}} \cdots e_{n}^{\epsilon_{n}}$ such that $\iota e_{1}^{\epsilon_{1}}$ and $\tau e_{n}^{\epsilon_{n}}$ are branch points of X while $\iota e_{i}^{\epsilon_{i}}$ are valence two vertices, for $i=2, \cdots, n$. A b-arc in X is an arc with at least one of the e_{i} labelled b. An a-arc in X is an arc which is not a b-arc, that is, with all the edges labelled a.

Let $f:(X, \rho) \rightarrow(Y, \sigma)$ be an I-labelled graph immersion. Here f carries branch points of X to branch points of Y. Also f carries an arc, p, in X to a reduced path in Y which decomposes in a unique way as a reduced product of arcs in Y, $p f=p_{1} \cdots p_{m}$; in this situation we say that each p_{i} and p_{i}^{-1} occur in $p f$ (and thus in $p^{-1} f$). Clearly p is a b-arc if and only if one of the arcs occuring in $p f$ is a b-arc. Let $p(\operatorname{resp} . q)$ be an arc in $X($ resp. $Y)$. We denote by $o_{p}(q)$ the number of occurences of q or q^{-1} in the above reduced expression for $p f$. Let $o(q)$ denote $\frac{1}{2} \sum_{p} o_{p}(q)$, where the sum is over the set of all the $\operatorname{arcs} p$ in X. Thus $o_{p^{\epsilon}}\left(q^{\delta}\right)$ is a nonnegative integer independent of $\epsilon, \delta= \pm 1$, and is positive if and only if q occurs in $p f$. Further, $o(q)$ is the total number of times that q and q^{-1} occur in the image of an arc in X, up to orientation.

Let $H=\left\langle a, b a b^{-1}\right\rangle<F_{2}$ and let $K \leq F_{2}$ with $r(K)=2$. The immersions $\rho_{H}: X_{H} \rightarrow R_{2}$ and $\rho_{K}: X_{K} \rightarrow R_{2}$ have a pullback, which we will denote by $\left(\sigma_{H}, \sigma_{K}\right): W \rightarrow X_{H} \times X_{K}$; both σ_{H} and σ_{K} are immersions. See [6] for the construction and basic properties. Let σ denote the diagonal map $\sigma_{H} \rho_{H}=\sigma_{K} \rho_{K}$.

Observe that the I-labelled graph immersion $\left(X_{H}, \rho_{H}\right)$ is that depicted in Fig. 2 where each edge is labelled with its I-label. Note that the base point u of $\left(T_{H}, \rho_{H}\right)$ belongs to X_{H} and let v denote the other vertex of X_{H}. The rank two core graph X_{K} has one of the three topology types depicted in Fig. 3. In Fig. 3(c), if the two branch points have links with labels $\left\{a, a^{-1}, b\right\}$ and $\left\{a, a^{-1}, b^{-1}\right\}$, let x denote the former branch point, and let y denote the latter branch point; in all other cases, let x denote one of the branch points, and if there is another branch point, let y denote

FIG. 2
it.
3.2 Lemma. In the above situation, if one of the components of W has rank two, and W_{0} is its core, then one of the following holds:
(a) $\sigma_{K}: W_{0} \rightarrow X_{K}$ is an I-labelled graph isomorphism,
(b) $(u, x) \in V W_{0}$ and for some $h \in H$ and $n \geq 1,\left(\pi\left(X_{K}, x\right)\right) \rho_{K}=\left\langle a^{n}, h b\right\rangle$ and $\left(\pi\left(W_{0},(u, x)\right)\right) \sigma=\left\langle a^{n}, h b a^{n} b^{-1} h^{-1}\right\rangle$.

Proof. In the case where X_{K} has the topology type of Fig. 3(a), the two branch points of W are (u, x) and (v, x), and they belong to W_{0}, and have valence three in W_{0}.

In the case where X_{K} has the topology type of Fig. 3(b) or 3(c), the only possible branch points of W are $(u, x),(v, x),(u, y)$ and (v, y). But if both (u, x) and (v, x) occur, then $(\operatorname{lk}(u)) \rho_{H}=(\operatorname{lk}(u, x)) \sigma=(\operatorname{lk}(x)) \rho_{K}=(\operatorname{lk}(v, x)) \sigma=(\operatorname{lk}(v)) \rho_{H}$, which is a contradiction. Thus, at most one of (u, x) and (v, x) has valence three. Now $r\left(W_{0}\right)=2$ implies that exactly one of (u, x) and (v, x) belongs to W_{0} and has valence three in W_{0}. A similar argument holds with y in place of x. Furthermore, W has a unique rank two component and its core is W_{0}, and has the topology type of Fig. 3(b) or 3(c).

There is exactly one edge in X_{H} labelled b, so the graph morphism σ_{K} is injective on b-labelled edges. The following is another way of saying the same fact and it is the fundamental point of the proof:

$$
\begin{equation*}
\text { every arc } q \text { of } X_{K} \text { with } o(q) \geq 2 \text { is an a-arc. } \tag{1}
\end{equation*}
$$

Let us now consider three cases depending on the topology type of X_{K}.
Case 1: X_{K} has the topology type of Fig. 3(a). Here W_{0} has exactly three distinct arcs, up to orientation, and X_{K} has exactly two. So, by (1), one of the two arcs in X_{K} is an a-arc. Moreover, one of the arcs is a b-arc whose first and last edges have label b. Let q denote the b-arc with first (and last) edge labelled b (and not b^{-1}). Then $\left(\pi\left(X_{K}, x\right)\right) \rho_{K}=\left\langle a^{n}, k\right\rangle$, where $n \geq 1$ and $k=q \rho_{K} \in F_{2}$.

FIG. 3

But, by the pullback construction, there exist two closed a-arcs of length n in W with initial (and terminal) vertices (u, x) and (v, x); furthermore, they lie in W_{0}. To complete the description of W_{0}, we add a b-arc, denoted p, from (u, x) to (v, x), which is mapped under σ_{K} to q, and so has label k. Thus, $(u, x) \in V W_{0}$ and $\left(\pi\left(W_{0},(u, x)\right)\right) \sigma=\left\langle a^{n}, k a^{n} k^{-1}\right\rangle$. Finally, by considering the image of p under σ_{H}, we see that $k=h b$ for some $h \in H$. Thus, (b) holds.

Case 2: X_{K} has the topology type of Fig. 3(b). Let q_{1} denote the unique nonclosed arc in X_{K} joining x to y, and let q_{2} and q_{3} denote the two closed arcs in X_{K} with clockwise orientation, based at x and y respectively. Let $\operatorname{lk}(x)=\left\{e_{1}, e_{2}, e_{3}\right\} \subset$ $\left(E X_{K}\right)^{ \pm 1}$ and assume that e_{1} is the first term of q_{1}.

It is clear that if W_{0} has the topology type of Fig. 3(c) then $o\left(q_{1}\right) \geq 3, o\left(q_{2}\right) \geq 2$ and $o\left(q_{3}\right) \geq 2$ so, by (1), q_{1}, q_{2} and q_{3} are a-arcs, which is a contradiction. Thus W_{0} has the topology type of Fig. 3(b). Its two branch points are (w_{x}, x) and $\left(w_{y}, y\right)$ where $w_{x}, w_{y} \in\{u, v\}$. Let p_{1} denote the arc in W_{0} joining $\left(w_{x}, x\right)$ to (w_{y}, y), and let e_{1}^{\prime} denote the first term of p_{1}. Let p_{2} be a closed arc in W_{0} at $\left(w_{x}, x\right)$, and let e_{2}^{\prime} denote the first term of p_{2}. Let e_{3}^{\prime} denote the first term of p_{2}^{-1}, so $\operatorname{lk}\left(w_{x}, x\right)=\left\{e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right\}$. If $e_{1}^{\prime} \sigma_{K} \neq e_{1}$ then $o\left(q_{1}\right) \geq 2$ and $o\left(q_{2}\right) \geq 2$ which contradicts the fact that q_{1} and q_{2} cannot both be a-arcs. Thus, $e_{1}^{\prime} \sigma_{K}=e_{1}$. A similar result holds, with y in place of x. Now q_{i} occurs in $p_{i} \sigma_{K}, i=1,2,3$. If q_{2} or q_{3} occur in $p_{1} \sigma_{K}$ then $o\left(q_{1}\right) \geq 3, o\left(q_{2}\right) \geq 2$ and $o\left(q_{3}\right) \geq 2$ which is impossible. So $p_{1} \sigma_{K}=q_{1}$. Now suppose that $p_{2} \sigma_{K}=q_{2}^{\epsilon} \cdot w$ for some $\epsilon= \pm 1$ and some nontrivial path w. Then $o\left(q_{2}\right) \geq 2$, so q_{2} is an a-arc and there must exist a closed a-arc in W_{0} with the same length as q_{2} and based at the branch point (w_{x}, x) which contradicts the non-triviality of w. Thus $p_{2} \sigma_{K}=q_{2}^{ \pm 1}$, and similarly $p_{3} \sigma_{K}=q_{3}^{ \pm 1}$. This completes the proof that (a) holds.

Case 3: X_{K} has the topology type of Fig. 3(c). Denote by q_{1}, q_{2} and q_{3} the three arcs in X_{K} joining x to y. It is easy to see that if at least two of them are b-arcs then W_{0} has the topology type of Fig. 3(c), and (a) holds. So we may assume that, q_{1} and q_{2} are a-arcs and q_{3} is a b-arc. There exist positive integers r, s such that $q_{1} \rho_{K}=a^{r}$ and $q_{2} \rho_{K}=a^{-s}$. Thus, in W there are two paths joining (u, x) to (u, y) whose last coordinates are respectively q_{1} and q_{2}; and similarly with v in place of u. But $r\left(W_{0}\right)=2$, so W also contains an arc, p_{3}, whose last coordinate is q_{3}, and joining (u, x) to (u, y), or (v, x) to (v, y), or (u, x) to (v, y) (but not
(v, x) to (u, y), by the choice of x and $y)$. In the first two cases, (a) holds. It remains to consider the third case. Let $n=r+s$, and $k=q_{3} \rho_{K}=p_{3} \sigma \in F_{2}$. Consider the image of p_{3} under σ_{H}, and observe that $k=h^{\prime} b$ for some $h^{\prime} \in H$. Now, $(u, x) \in V W_{0},\left(\pi\left(X_{K}, x\right)\right) \rho_{K}=\left\langle a^{n}, k a^{s}\right\rangle=\left\langle a^{n}, h b\right\rangle$ and $\left(\pi\left(W_{0},(u, x)\right)\right) \sigma=$ $\left\langle a^{n}, k a^{n} k^{-1}\right\rangle=\left\langle a^{n}, h b a^{n} b^{-1} h^{-1}\right\rangle$, where $h=h^{\prime}\left(b a^{s} b^{-1}\right) \in H$. Thus (b) holds in this case.
3.3 Theorem. Let F_{2} be the free group on $\{a, b\}$, and let $H=\left\langle a, b a b^{-1}\right\rangle$. If K is a subgroup of F_{2} with $r(K)=r(H \cap K)=2$, then one of the following holds:
(a) $K \subseteq H$, so $H \cap K=K$;
(b) $K=\left\langle a^{n}, h_{1} b\right\rangle^{h_{2}}$, for some elements $h_{1}, h_{2} \in H$ and $n \geq 1$, so $H \cap K=$ $\left\langle a^{n}, h_{1} b a^{n} b^{-1} h_{1}^{-1}\right\rangle^{h_{2}}$.

Proof. Consider the I-labelled graph coverings $\left(T_{H}, \rho_{H}\right)$ and $\left(T_{K}, \rho_{K}\right)$ with base points u and w, respectively. Note that the base point u of $\left(T_{H}, \rho_{H}\right)$ belongs to X_{H} (and so, $\hat{u}=u$), but w does not necessarily belong to X_{K}. We know that the fundamental group at (u, w) of the pullback of these two coverings is (isomorphic to) $H \cap K$. So, this pullback has a component of rank two. The core of this component coincides with the core of the unique rank two component of the pullback of the two immersions $\rho_{H}: X_{H} \rightarrow R_{2}$ and $\rho_{K}: X_{K} \rightarrow R_{2}$; that is, it coincides with W_{0} using the above notation. So Lemma 3.2 applies.

Suppose first that (a) of Lemma 3.2 holds. There exists a vertex in W_{0} of the form (u, z), for some $z \in V X_{K}$. We have $H \cap\left(\pi\left(X_{K}, z\right)\right) \rho_{K}=\left(\pi\left(X_{H}, u\right)\right) \rho_{H} \cap$ $\left(\pi\left(X_{K}, z\right)\right) \rho_{K}=\left(\pi\left(W_{0},(u, z)\right)\right) \sigma=\left(\pi\left(X_{K}, z\right)\right) \rho_{K}$. We also have $\left(\pi\left(X_{K}, z\right)\right) \rho_{K}=$ $\left(\pi\left(X_{K}, w\right)\right)^{p} \rho_{K}=K^{g}$, where p is an arbitrary path in T_{K} from w to z and $g=$ $p \rho_{K} \in F_{2}$. So $H \cap K^{g}=K^{g}$, that is, $K^{g} \leq H$.

Suppose next that (b) of Lemma 3.2 holds. Choose an arbitrary path p in T_{K} from w to x and let $g=p \rho_{K} \in F_{2}$. We have $K^{g}=\left(\pi\left(X_{K}, x\right)\right) \rho_{K}=\left\langle a^{n}, h b\right\rangle$ and $H \cap K^{g}=\left(\pi\left(W_{0},(u, x)\right)\right) \sigma=\left\langle a^{n}, h b a^{n} b^{-1} h^{-1}\right\rangle$, for some $h \in H$ and $n \geq 1$.

In summary, there exists $g \in F_{2}$ such that one of the following holds:
($\left.\mathrm{a}^{\prime}\right) K^{g} \leq H$ and $H \cap K^{g}=K^{g}$;
($\left.\mathrm{b}^{\prime}\right) K^{g}=\left\langle a^{n}, h b\right\rangle$ and $H \cap K^{g}=\left\langle a^{n}, h b a^{n} b^{-1} h^{-1}\right\rangle$ for some $h \in H$ and $n \geq 1$.
Now $r(H \cap K)=r\left(H \cap K^{g}\right)=2$. But H is the fixed subgroup of the automorphism of F_{2} given by $a \mapsto a, b \mapsto b a$ so, by Theorem IV.5.5 of [3], g and 1 belong to the same double coset in $K \backslash F / H$. That is, $g=k h_{2}^{-1}$ for some $k \in K$ and some $h_{2} \in H$. Thus $K^{g}=K^{h_{2}^{-1}}, H \cap K^{g}=H \cap K_{2}^{h_{2}^{-1}}=(H \cap K)^{h_{2}^{-1}}$. Now, taking $h_{1}=h$, the theorem is proved.

Using Theorems 2.2 and 3.3 we obtain the main result of this section:
3.4 Theorem. Let F be a free group of rank two, and S a non-empty set of non-identity endomorphisms of F such that $r(F i x S)=2$. Then $S \subseteq$ Aut (F), and Fix $S=\left\langle a, b a b^{-1}\right\rangle$ for some basis $\{a, b\}$ of F, and Fix $S=F i x \phi$ for each $\phi \in S$.

Proof. Let $\phi \in S$, and let $H=\operatorname{Fix} \phi$. By the Corollary in [5], $r(H) \leq 2$. But H is non-abelian, since it contains Fix S which has rank two. Hence $r(H)=2$. By Corollary 2 of [9], ϕ is an automorphism. By Theorem A of [2], we can assume that $F=\langle a, b\rangle$ and $H=\left\langle a, b a b^{-1}\right\rangle$.

Hence $S \subseteq$ Aut (F).
Let $\psi \in S$, and let $K=\operatorname{Fix} \psi$. By the foregoing, $r(K)=2$. By Theorem IV.5.7 of [3], or Theorem 1 of [7], $r(H \cap K) \leq 2$. But $H \cap K$ is not abelian since it contains Fix S which has rank two. So, $r(H \cap K)=2$. Now, by Theorem 3.3, either $K \leq H$ or $K=\left\langle a^{n}, h_{1} b\right\rangle^{h_{2}}$ for some $h_{1}, h_{2} \in H$ and $n \geq 1$. But in the latter case, we would have $r^{a b}\left(K ; F_{2}\right)=2$, which contradicts Theorem 2.2 applied to $K<F \leq F$. Thus, $K \leq H<F$ and, by Theorem $2.3, K=H$. The result is now clear.
3.5 Corollary. Let F be a free group of rank two, and S a subset of $\operatorname{End}(F)$. If $r($ Fix $S)=2$, then S fixes some primitive element of F.

There is a simple description of the sets of endomorphisms of a free group of rank two with fixed group of rank two.
3.6 Proposition. Let S be a subset of $\operatorname{End}\left(F_{2}\right)$, and let ψ be the automorphism of F_{2} given by $a \psi=a, b \psi=b a$. Then $F i x S=\left\langle a, b a b^{-1}\right\rangle$ if and only if every element of S is a power of ψ, and some non-identity power of ψ belongs to S.

Proof. We may assume that S is a non-empty set of non-identity endomorphisms of F_{2}.

Suppose Fix $S=\left\langle a, b a b^{-1}\right\rangle$. By Theorem 3.4, $S \subseteq$ Aut $\left(F_{2}\right)$, and, for every $\phi \in S, \operatorname{Fix} \phi=\left\langle a, b a b^{-1}\right\rangle$. Now, using Theorem A in [2] (or directly working with the fact that a and $b a b^{-1}$ are fixed by the non-identity automorphism ϕ), we obtain $a \phi=a$ and $b \phi=b a^{r}$ for some $r \neq 0$. That is, $\phi=\psi^{r}$.

The result is now clear.
Combining Theorem 3.4 and Proposition 3.6 we have the following.
3.7 Theorem. Let F be a free group of rank two. If G is a subset of End (F) which is maximal with the property that $r(\operatorname{Fix} G)=2$, then G is an infinite cyclic group. Hence each subgroup of Aut (F) with rank two fixed subgroup is either trivial or infinite cyclic.

Observe that the infiniteness of G (which here comes from the fact that ψ is not periodic) agrees with Theorem 2 of [4].

Let us observe the following.
3.8 Corollary. Let F be a free group of rank two and let H be a proper maximal rank fixed subgroup of F. Then no non-identity endomorphism of H with rank two fixed subgroup can be extended to an endomorphism of F.

Proof. Let $\phi: H \rightarrow H$ be an endomorphism with $r(\operatorname{Fix} \phi)=2$ and suppose ϕ can be extended to an endomorphism $\tilde{\phi}$ of F. Then Fix $\tilde{\phi} \cap H=\operatorname{Fix} \phi$ has rank two, so, by Theorem 3.4, Fix $\tilde{\phi}=H$. Thus, ϕ is the identity.

Let us conclude by describing the subgroups of the free group of rank two which are the fixed subgroups for some set of endomorphisms. As a Corollary, we can answer a question of G. Levitt in the rank two case.
3.9 Theorem. Let F be a free group of rank two, and let H be a subgroup of F. The following are equivalent:
(a) $H=\operatorname{Fix} \phi$ for some $\phi \in \operatorname{Aut}(F)$,
(b) $H=\operatorname{Fix} \phi$ for some $\phi \in \operatorname{End}(F)$,
(c) $H=\operatorname{Fix} S$ for some $S \subseteq \operatorname{End}(F)$,
(d) H is $\{1\}$, or $\langle w\rangle$ for some $w \in F$ which is not a proper power, or $\left\langle a, b a b^{-1}\right\rangle$ for some basis $\{a, b\}$ of F, or F,
(e) $H=F i x G$ for some $G \subseteq \operatorname{Aut}(F)$.

Proof. Obviously, (a) implies (b) and (b) implies (c).
Suppose that $H=\operatorname{Fix} S$ for some $S \subseteq \operatorname{End}(F)$. By Theorem IV.5.7 in [3], H has rank at most two. If $r(H)=0$ then $H=\{1\}$. If $r(H)=1$ then $H=\langle w\rangle$ for some $w \in F$. But if a power of an element of a free group is fixed by an endomorphism then the element itself is also fixed. So, w is not a proper power. Finally, if $r(H)=2$ then, by Theorem 3.4, $H=\left\langle a, b a b^{-1}\right\rangle$ for some basis $\{a, b\}$ of F, or $H=F$. Thus, (c) implies (d).

The trivial subgroup is the fixed subgroup of an automorphism of F permuting the two elements of some basis. If w is not a proper power, then $\langle w\rangle$ is the fixed subgroup of (right or left) conjugation by w. If $\{a, b\}$ is a basis of F, then $\left\langle a, b a b^{-1}\right\rangle$ is the fixed subgroup of the automorphism given by $a \mapsto a, b \mapsto b a$. Obviously, F is the fixed subgroup of the identity. So, (d) implies (a).

Finally, it is obvious that (a) implies (e), and that (e) implies (c).
3.10 Corollary. Let F be a free group of rank two, and let S be a subset of $\operatorname{End}(F)$. Then there exists a finite subset $S_{0} \subseteq S$ such that Fix $S_{0}=\operatorname{Fix} S$.

Proof. Choose $\phi_{1} \in S$. If Fix $\phi_{1}=\operatorname{Fix} S$ then the result is proven. Otherwise, choose $\phi_{2} \in S$ such that Fix $\left\{\phi_{1}, \phi_{2}\right\}$ is strictly contained in Fix ϕ_{1}. By Theorems 3.9 and 2.3 we can repeat this operation at most four times. Thus, there exist $S_{0} \subseteq S$ such that Fix $S_{0}=\operatorname{Fix} S$ and $\left|S_{0}\right| \leq 3$.

4. Comments about rank higher than two.

One might conjecture that Theorem 3.4 extends to higher finite ranks, in the form that the intersection of maximal rank fixed subgroups in F_{n} is again a maximal rank fixed subgroup, where now it is possible for the intersections to be proper, by Theorem 2.3. Here graphical arguments using coverings and immersions to represent subgroups of F_{n}, and pull-backs to control intersections, seem not to be sufficient to
prove such a result. Any kind of argument distinguishing topology types of graphs with rank n and their pull-backs leads to a list of possibilities which grows very quickly with n. This growth makes it difficult to analize the general situation for $n \geq 3$.

For example, in the case where $F_{3}=\langle a, b, c \mid\rangle$, and $H=\left\langle a, b, c w c^{-1}\right\rangle, w \in$ $\langle a, b\rangle$, we have the following three types of subgroups K of F_{3} with $r(K)=r(H \cap$ $K)=3$ (among possibly others):

- $K \leq H$, so $H \cap K=K$,
- $K=\left\langle w^{m}, h_{1}, h_{2} c\right\rangle^{h_{3}}, h_{1}, h_{2}, h_{3} \in H$, so $H \cap K=\left\langle w^{m}, h_{1}, h_{2} c w c^{-1} h_{2}^{-1}\right\rangle^{h_{3}}$
- $K=\left\langle u_{1}, u_{2}, h_{1} c\right\rangle^{h_{2}}, h_{1}, h_{2} \in H, u_{1}, u_{2} \in\langle a, b\rangle$ with $\left\langle u_{1}, u_{2}\right\rangle$ having rank two, $w^{m} \in\left\langle u_{1}, u_{2}\right\rangle$, so $H \cap K=\left\langle u_{1}, u_{2}, h_{1} c w^{m} c^{-1} h_{1}^{-1}\right\rangle^{h_{2}}$.

And in the case where $F_{3}=\langle a, b, c \mid\rangle$, and $H=\left\langle a, b a b^{-1}, c w c^{-1}\right\rangle, w \in$ $\left\langle a, b a b^{-1}\right\rangle$, observe the following two examples:

- $K=\left\langle u_{1}, u_{2}, h_{1} c\right\rangle^{h_{2}}, h_{1}, h_{2} \in H, u_{1}, u_{2} \in\left\langle a, b a b^{-1}\right\rangle$ with $\left\langle u_{1}, u_{2}\right\rangle$ having rank two, $w^{m} \in\left\langle u_{1}, u_{2}\right\rangle$, so $H \cap K=\left\langle u_{1}, u_{2}, h_{1} c w^{m} c^{-1} h_{1}^{-1}\right\rangle^{h_{2}}$.
- $K=\left\langle a^{n}, h_{1} b,\left(h_{2} c\right)^{h_{3}}\right\rangle^{h_{4}}, h_{1}, h_{2}, h_{3}, h_{4} \in H,\left(w^{m}\right)^{h_{3}} \in\left\langle a^{n}, h_{1} b\right\rangle$, so $H \cap K=$ $\left\langle a^{n}, h_{1} b a^{n} b^{-1} h_{1}^{-1},\left(h_{2} c w^{m} c^{-1} h_{2}^{-1}\right)^{h_{3}}\right\rangle^{h_{4}}$.

Acknowledgements

The author thanks Warren Dicks for stimulating conversations, and for suggesting many corrections and clarifications. He is also grateful to Ted Turner for his hospitality during a short visit to SUNY at Albany, when the last details of this paper were written.

The author gratefully acknowledges partial support by the DGICYT through grant PB93-0900.

References

[1] M. Bestvina and M, Handel, Train tracks and automorphisms of free groups, Ann. of Math. (2) 135 (1992), 1-51.
[2] D.J. Collins and E.C. Turner, All automorphisms of free groups with maximal rank fixed subgroups, Math. Proc. Camb. Phil. Soc. 119 (1996), 615-630.
[3] W. Dicks and E. Ventura, The group fixed by a family of injective endomorphisms of a free group, Contemporary Mathematics 195 (1996), 1-81.
[4] J.L. Dyer and G.P. Scott, Periodic automorphisms of free groups, Comm. Algebra 3 (1975), 195-201.
[5] W. Imrich and E.C. Turner, Endomorphisms of free groups and their fixed points, Math. Proc. Cambridge Philos. Soc. 105 (1989), 421-422.
[6] J.R. Stallings, Topology of finite graphs, Invent. Math. 71 (1983), 551-565.
[7] G. Tardos, On the intersection of subgroups of a free group, Invent. Math. 108 (1992), 29-36.
[8] M. Takahasi, Note on chain conditions in free groups, Osaka Math. J. 3 (1951), 221-225.
[9] E.C. Turner, Test words for automorphisms of free groups, Bull. London Math. Soc. 28 (1996), 255-263.

